UNIVERSITY OF GREATER MANCHESTER SCHOOL OF HEALTH, SCIENCE AND SOCIETY

BSc (HONS) MEDICAL BIOLOGY BSc (HONS) BIOMEDICAL SCIENCE

SEMESTER TWO EXAMINATION 2024/2025

MOLECULAR AND CELLULAR BIOLOGY

MODULE NO: BIO4010

Date: Monday 12 May 2025 Time: 2.00 pm – 4.30 pm

INSTRUCTIONS TO CANDIDATES:

Candidates are advised that the examiners attach importance to legibility of writing and clarity of expression. YOU ARE STRONGLY ADVISED TO PLAN YOUR ANSWERS

There are <u>TWO</u> sections.

Answer <u>ALL</u> questions from Section A (MCQS: 75 marks) and Section B (Short answer Qs: 50 marks).

Write all answers in answer booklet, including answers to Section A.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 125 marks.

Calculators are permitted, but all working must be shown.

SECTION A: Answer ALL questions in this section in the answer booklet, not on the question paper; 1 mark per question, 75 marks in total.

- 1. What is the smallest unit of matter that retains the properties of an element?
 - a. Molecule.
 - b. Atom.
 - c. Ion.
 - d. Compound.
- 2. What does Avogadro's constant represent?
 - a. The number of molecules in one mole of substance.
 - b. The weight of one atom.
 - c. The mass of water molecules.
 - d. The atomic number of elements.
- 3. What is the molarity of a solution with 2 moles of solute in 1 litre of solvent?
 - a. 2 M.
 - b. 1 M.
 - c. 0.5 M.
 - d. 3 M.
- 4. Which property makes water an excellent solvent for ionic compounds?
 - a. Its high pH.
 - b. Its dipole nature.
 - c. Its neutral charge.
 - d. Its low molecular mass.
- 5. What is the primary difference between prokaryotic and eukaryotic cells?
 - a. Presence of a cell membrane.
 - b. Presence of a membrane-bound nucleus.
 - c. Ability to reproduce.
 - d. Presence of ribosomes.
- 6. What is the function of the plasma membrane?
 - a. To provide structural support.
 - b. To regulate the entry and exit of materials.
 - c. To synthesize proteins.
 - d. To store genetic material.

Page 3 of 18

- 7. Which term describes the semi-fluid substance in the cytoplasm?
 - a. Cytosol.
 - b. Plasma.
 - c. Matrix.
 - d. Solution.
- 8. What type of cells contain mitochondria?
 - a. Only prokaryotic cells.
 - b. All eukaryotic cells.
 - c. Plant cells only.
 - d. Animal cells only.
- 9. What is the primary function of DNA?
 - a. To store energy.
 - b. To form the genetic code.
 - c. To synthesise amino acids.
 - d. To produce ribosomes.
- 10. Which sugar is found in the backbone of RNA?
 - a. Ribose.
 - b. Deoxyribose.
 - c. Glucose.
 - d. Fructose.
- 11. What is the difference between deoxyribose and ribose?
 - a. Ribose has one less oxygen atom.
 - b. Deoxyribose has one less oxygen atom.
 - c. Ribose has an additional nitrogen atom.
 - d. Deoxyribose has an additional nitrogen atom.
- 12. What is the width of the DNA double helix?
 - a. 2 nm.
 - b. 3.4 nm.
 - c. 10 nm.
 - d. 1.4 nm.

- 13. Why does base pairing in DNA occur specifically between A-T and C-G?
 - a. Hydrogen bonding patterns and molecule size compatibility.
 - b. Base proximity to the sugar-phosphate backbone.
 - c. Random interactions between nitrogenous bases.
 - d. Differences in electronegativity between paired bases.
- 14. Which model of DNA replication was supported by the Meselson and Stahl experiment?
 - a. Conservative model.
 - b. Semiconservative model.
 - c. Dispersive model.
 - d. Fragmentation model.
- 15. In eukaryotic cells, why are multiple origins of replication necessary?
 - a. To maintain the circular nature of the DNA.
 - b. To prevent errors in the replication process.
 - c. To speed up the replication of large linear chromosomes.
 - d. To synthesize RNA primers effectively.
- 16. What is the function of Okazaki fragments?
 - a. They form continuous strands of DNA on the leading strand.
 - b. They result from discontinuous synthesis on the lagging strand.
 - c. They repair errors in DNA synthesis.
 - d. They initiate RNA primer synthesis.
- 17. Which strand is synthesized continuously during DNA replication?
 - a. Template strand.
 - b. Leading strand.
 - c. Lagging strand.
 - d. Okazaki fragment strand.
- 18. What is the direction of DNA transcription?
 - a. 3' to 5'.
 - b. 5' to 3'.
 - c. 2' to 4'.
 - d. 4' to 2'.

Page 5 of 18

- 19. Which sequence is a eukaryotic promoter commonly associated with?
 - a. GGGCCC.
 - b. TATAAAA.
 - c. AAATTT.
 - d. CCGGTT.
- 20. What is the role of mRNA?
 - a. Forms the genetic code.
 - b. Transports genetic information to ribosomes.
 - c. Builds ribosomal subunits.
 - d. Replicates DNA strands.
- 21. What type of RNA is synthesized during transcription?
 - a. tRNA.
 - b. mRNA.
 - c. rRNA.
 - d. siRNA.
- 22. Which amino acid does the codon AUG code for?
 - a. Valine.
 - b. Methionine.
 - c. Leucine.
 - d. Glutamic acid.
- 23. What is the function of the anticodon in tRNA?
 - a. Binds to amino acids.
 - b. Recognises and binds mRNA codons.
 - c. Catalyses peptide bond formation.
 - d. Terminates translation.
- 24. What is the significance of redundancy in the genetic code?
 - a. Allows more codons to exist than amino acids.
 - b. Prevents nonsense mutations.
 - c. Creates overlapping codons.
 - d. Stops protein synthesis early.

Page 6 of 18

- 25. Where does translation take place in eukaryotic cells?
 - a. Nucleus.
 - b. Cytoplasm.
 - c. Mitochondria.
 - d. Smooth endoplasmic reticulum.
- 26. Which of the following represent a heterozygous genotype?
 - a. Aa
 - b. aa
 - c. AA
 - d. None of the above
- 27. A silent mutation involves:
 - a. The creation of a different amino acid.
 - b. The creation of a start codon.
 - c. The creation of a stop codon.
 - d. None of the above
- 28. Which of the following is a start codon?
 - a. UAG
 - b. AUG
 - c. UAA
 - d. UGA
- 29. Which of the following is an example of a prokaryotic model organism?
 - a. Escherichia coli
 - b. Saccharomyces cerevisiae
 - c. Drosophila melanogaster
 - d. None of the above
- 30. In PCR, which of the following is a cofactor for DNA Polymerase?
 - a. dNTPs
 - b. Primers
 - c. Magnesium
 - d. None of the above

Page 7 of 18

- 31. Mycotoxins are produced by?
 - a. Bacteria
 - b. Fungi
 - c. Viruses
 - d. All of the above
- 32. In bacteria, peptidoglycan is composed of:
 - a. β-(1,4) linked N-acetylglucosamine and N-acetylmuramic acid
 - b. β-(1,3) linked N-acetylglucosamine and N-acetylmuramic acid
 - c. β-(1,2) linked N-acetylglucosamine and N-acetylmuramic acid
 - d. β-(1,6) linked N-acetylglucosamine and N-acetylmuramic acid
- 33. Which of the following is the target of amphotericin B in the fungal cell wall?
 - a. Stigmasterol
 - b. Cholesterol
 - c. Ergosterol
 - d. None of the above
- 34. Which one of the following is **NOT** associated with bacterial cells?
 - a. Lysosomes
 - b. Golgi apparatus
 - c. Nucleus
 - d. All of the above
- 35. Which of the following describes cholera toxin?
 - a. AB2 toxin
 - b. AB3 toxin
 - c. AB4 toxin
 - d. AB5 toxin
- 36. Which part of bacterial lipopolysaccharide (LPS) has endotoxin activity?
 - a. Outer Core
 - b. Lipid A
 - c. Inner Core
 - d. None of the above

Page 8 of 18

- 37. The extracellular matrix of a bacterial biofilm can be composed of:
 - a. Extracellular DNA
 - b. Polysaccharide
 - c. Protein
 - d. All of the above
- 38. Which of the following statements is **FALSE** for bacterial plasmids?
 - a. Plasmid replication is independent of chromosome replication
 - b. Plasmids are double stranded DNA molecules
 - c. Plasmids are single stranded DNA molecules
 - d. Plasmids are extrachromosomal
- 39. Which of the following statements about viruses is **TRUE**?
 - a. Viruses have membrane-bound organelles.
 - b. Viruses replicate independently of the host cell.
 - c. Viruses are obligate intracellular pathogens.
 - d. Viruses are obligate extracellular pathogens.
- 40. Which of the following host receptors recognise lipopolysaccharide (LPS) in humans?
 - a. Toll-like receptor 4 (TLR4)
 - b. Toll-like receptor 5 (TLR5)
 - c. Toll-like receptor 8 (TLR8)
 - d. Toll-like receptor 9 (TLR9)
- 41. Which of the following is **NOT** a type of chromosomal aberration?
 - a. Inversion
 - b. Duplication
 - c. Translocation
 - d. Conversion
- 42. Which of the following is NOT a key characteristic of a model organism?
 - a. Long life cycles
 - b. Easy to cross/breed
 - c. Characterised genomic sequence
 - d. Large numbers of offspring

Page 9 of 18

School of Health, Science and Society BSc (Hons) Medical Biology/BSc (Hons) Biomedical Science Semester Two Examination 2024/2025 Molecular and Cellular Biology Module No. BIO4010

43. Point mutations:

- a. Can have no effect on the resulting protein structure
- b. Can have a minor effect on the resulting protein structure.
- c. Can have a major effect on the resulting protein structure.
- d. All of the above are true.
- 44. Which of the following factors can influence individual immunity?
 - a. Age
 - b. Malnutrition
 - c. Hormones
 - d. All of the above.
- 45. Which of the following are examples of phagocytic cells?
 - a. Macrophages
 - b. Neutrophils
 - c. Dendritic cells
 - d. All of the above.
- 46. Antibodies are made by which of the following cells?
 - a. B Lymphocytes
 - b. T Lymphocytes
 - c. Macrophages
 - d. NK cells
- 47. How many different codons are possible?
 - a. 64
 - b. 20
 - c. 3
 - d. An infinite number
- 48. Which of the following is **NOT** part of PCR?
 - a. Degradation
 - b. Denaturation
 - c. Annealing
 - d. Extension

Page 10 of 18

- 49. Which of the following are **NOT** part of innate immunity?
 - a. Antibodies
 - b. Epithelial barriers
 - c. Complement
 - d. NK cells
- 50. Which of the following is **NOT** a granulocyte?
 - a. Macrophage
 - b. Neutrophil
 - c. Eosinophils
 - d. Basophil
- 51. Which of the following is **NOT** a component of the eukaryotic cytoskeleton?
 - a. Microtubules
 - b. Microfilaments
 - c. Intermediate filaments
 - d. Ribosomes
- 52. Kinetochores serve as points of attachment for:
 - a. Microtubules
 - b. Microfilaments
 - c. Intermediate filaments
 - d. All of the above
- 53. Which of the following components of the cytoskeleton is composed of actin?
 - a. Microtubules
 - b. Intermediate filaments
 - c. Microfilaments
 - d. None of the above
- 54. Which of the following is a key difference between mitosis and meiosis?
 - a. Mitosis produces four daughter cells, meiosis produces two
 - b. Mitosis involves two rounds of division, meiosis involves one
 - c. Mitosis produces genetically identical cells, meiosis produces genetically diverse cells
 - d. Mitosis occurs in gametes, meiosis occurs in somatic cells

Page 11 of 18

- 55. During which phase of mitosis do the chromosomes align at the cell's equator?
 - a. Prophase
 - b. Metaphase
 - c. Anaphase
 - d. Telophase
- 56. What is the result of meiosis?
 - a. Two diploid cells
 - b. Four haploid cells
 - c. Two haploid cells
 - d. Four diploid cells
- 57. In meiosis, what is the significance of the reduction division?
 - a. It reduces the chromosome number by half
 - b. It doubles the chromosome number
 - c. It maintains the chromosome number
 - d. It increases genetic diversity
- 58. Which of the following is a characteristic of stem cells?
 - a. They can only divide a limited number of times
 - b. They are specialized cells
 - c. They have the ability to differentiate into various cell types
 - d. They cannot self-renew
- 59. Which stem cells are created by reprogramming adult stem cells?
 - a. Embryonic stem cells
 - b. Induced pluripotent stem cells
 - c. Unipotent stem cells
 - d. Totipotent stem cells

Page 12 of 18

- 60. What is the main ethical concern associated with the use of embryonic stem cells?
 - a. Their ability to cause tumours
 - b. The destruction of embryos
 - c. Their limited differentiation potential
 - d. Their high cost
- 61. Which of the following are types of protein receptors?
 - a. G-protein coupled receptors
 - b. Receptor tyrosine kinases
 - c. Ligand-gated ion channels
 - d. All of the above
- 62. Which of the following is **NOT** a source of adult stem cells?
 - a. Bone marrow
 - b. Embryos
 - c. Blood
 - d. Adipose tissue
- 63. Which of the following is the main function of the Rough Endoplasmic Reticulum (RER)?
 - a. It provides structural support for the cell
 - b. It is the main site for energy production in the cell
 - c. It is the site of DNA replication in the cell
 - d. It is the main site of folding, modifying and transporting proteins
- 64. Which enzyme in the ER catalyses the formation of disulfide bonds?
 - a. BiP
 - b. Calnexin
 - c. Protein Disulfide Isomerase (PDI)
 - d. Oligosaccharide Transferase (OTC)

- 65. Which sequence is found on all resident ER proteins for retrieval?
 - a. KDEL sequence
 - b. NLS sequence
 - c. NES sequence
 - d. PTS sequence
- 66. What happens to proteins that are not properly folded in the ER?
 - a. They are sent to the Golgi apparatus
 - b. They are degraded by the proteasome or autophagy
 - c. They are stored in the peroxisome
 - d. They are secreted out of the cell
- 67. What triggers the unfolded protein response (UPR) in the ER?
 - a. Accumulation of properly folded proteins
 - b. Accumulation of misfolded proteins
 - c. Increase in lipid synthesis
 - d. Decrease in calcium levels
- 68. What is the function of ubiquitin in the ERAD pathway?
 - a. Synthesizes proteins
 - b. Tags misfolded proteins for degradation
 - c. Transports lipids
 - d. Stores calcium
- 69. What process involves vesicles fusing with the plasma membrane to release their contents?
 - a. Endocytosis
 - b. Exocytosis
 - c. Autophagy
 - d. Retrotranslocation

- 70. Which of the following is the primary molecule used for energy storage in cells?
 - a. ATP
 - b. NADH
 - c. FADH2
 - d. Glucose
- 71. What is the main purpose of the citric acid cycle?
 - a. To produce glucose
 - b. To generate high-energy electron carriers
 - c. To store energy as glycogen
 - d. To synthesize proteins
- 72. What is the primary role of the electron transport chain in cellular respiration?
 - a. To produce glucose
 - b. To generate a proton gradient
 - c. To synthesize proteins
 - d. To store energy as glycogen
- 73. Which molecule serves as the final electron acceptor in the electron transport chain?
 - a. NAD+
 - b. FAD
 - c. Oxygen (O2)
 - d. Cytochrome c
- 74. Which protein family plays a crucial role in facilitating vesicle fusion with the plasma membrane during the process of exocytosis?
 - a. GTPases
 - b. ATPases
 - c. SNAREs (Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors)
 - d. Integrins

- 75. What is the net gain of ATP molecules produced directly from glycolysis per molecule of glucose?
 - a. 2 ATP
 - b. 4 ATP
 - c. 6 ATP
 - d. 8 ATP

[Total for Section A: 75 marks]

SECTION B: Answer ALL questions in this section in the answer booklet, not on the question paper; 5 marks per question, 50 marks in total.

- 76. You are working as a technician in a medical laboratory.
 - a) Describe how you would make 2 litres of a 0.5 M solution of NaCl. (Molar Mass Na = 22.99; Molar Mass Cl = 35.45).

(3 marks)

b) How would you dilute the solution described in part (a) to make 0.20 L of a 100 mM solution?

(2 marks)

Total 5 marks

77. Describe the key differences between prokaryotic and eukaryotic cells.

5 marks

78. Explain the role of tRNA in translation.

5 marks

79. a) **In your answer book**, complete the Punnett square shown below.

(3 marks)

b). What percentage offspring are in the heterozygous state?

(2 marks)

Father's Genotype

Mother's Genotype

	Α	а
Α		
а		

Total 5 marks

80. With the aid of a clearly labelled diagram, outline the key structural differences between Gram-positive and Gram-negative bacteria.

5 marks

81. Define the role of complement in innate immunity.

5 marks

82. Outline the steps in a polymerase chain reaction (PCR).

5 marks

Please turn the page

83. Define the common characteristics of signal peptides used in protein targeting.

5 marks

84. Describe the 3 typical modes of endocytosis in eukaryotic cells.

5 marks

85. Describe the difference between an embryonic stem cell and an adult stem cell.

5 marks

[Total for Section B: 50 marks]

END OF QUESTIONS PLEASE TURN THE PAGE FOR FORMULAE SHEET

School of Clinical and Biomedical Sciences BSc (Hons) Medical Biology and BSc (Hons) Biomedical Science Semester 1 Examinations 2024/25 Molecular and Cellular Biology Module No. BIO4010

FORMULAE SHEET

Molarity and dilution

Moles =
$$\frac{Mass}{M_r}$$

$$M_1V_1 = M_2V_2$$