UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG(HONS) ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER 1 EXAM 2024/25

INTRODUCTORY ELECTRICAL PRINCIPLES

MODULE NO: EEE4012

Date: Monday 13th January 2025 Time: 2:00pm – 4:00pm

<u>INSTRUCTIONS TO CANDIDATES:</u> There are FIVE questions.

Answer **ANY FOUR** questions.

All questions carry equal marks.

Individual marks are shown within the

question.

A formula sheet is given at the end of

the paper.

Question 1

- a) Define the following terms (1.5 marks for each definition):
 - i. Frequency
 - ii. Period
 - iii. Phase angle
 - iv. Peak to peak value
 - v. RMS value
 - vi. Internal resistance

[9 marks]

- b) An AC ammeter reads 11A rms current through a resistive load, and a voltmeter reads 360V rms drop across the load.
- (i) What are the peak values and the average values of the alternating current and voltage? [6 marks]
- (ii) Calculate the load resistance.

[2 marks]

c) Find the V_{AG} and V_{BG} in the circuit given in Figure Q1c below.

[8 marks]

Total Marks: 25 PLEASE TURN THE PAGE

Question 2

a) A coil of aluminium wire has a resistance of 50 Ω , when its temperature is 0 °C. Determine its resistance at 100 °C if the temperature coefficient of resistance (TCR) of aluminium at 0 °C is 0.0038/ °C.

[3 marks]

b) For the following circuit (Figure Q2b), using superposition theorem or otherwise, find out the current flowing through the 10 Ω resistor.

[10 marks]

Figure Q2b

c) For the circuit shown in figure Q2c below, calculate:

(i)	the voltage drop across the 4 $k\Omega$ resistor	[3 marks]
(ii)	the current through the 5 $k\Omega$ resistor	[3 marks]
(iii)	the power developed in the 1.5 $k\Omega$ resistor	[3 marks]
(iv)	the voltage at point X w.r.t. earth	[3 marks]

Fig.Q2c

Total Marks: 25
PLEASE TURN THE PAGE

Question 3

a) In the circuit given in figure Q3a below, use appropriate network conversion $(\Delta \text{ to Y/Y to } \Delta)$ to find the total current supplied by V_T . [15 marks]

Fig.Q3a

b) Use Thevenins Theorem to calculate the voltage and current through the resistor R_L [10 marks]

Fig.Q3b

Total Marks: 25
PLEASE TURN THE PAGE

Question 4

a) For the circuit shown in Fig. Q4, R=30Ω, L=150mH and C=100uF calculate:

 The inductive reactance and the capacitive reactance; 	[2 marks]
ii. The current through each branch, I_{R},I_{L} and $I_{C};$	[3 marks]
iii. The total current I_T ;	[3 marks]
iv. The phase angle between the voltage and the total current $\boldsymbol{\theta}$;	[3 marks]
v. The total impedance Z;	[3 marks]
vi. Is the circuit inductive or capacitive and why?	[3 marks]
vii. The resonance frequency.	[3 marks]

Figure Q4

b) For a single-phase transformer of rated power of 250 V.A, what would be its secondary voltage and current if it has turns ratio (N1/N2) of 10:1(step down) when it is connected to a supply mains of 250 V, 50 Hz. **[5 marks]**

Total Marks: 25
PLEASE TURN THE PAGE

Question 5

- a) What is the inductance of an inductor if the number of turns is 100 turns, relative permeability of 1000, and coil area to coil length ratio is 3? [3 marks]
- b) In a resistance-capacitor circuit shown in Figure Q5.b, the voltage drop across points A and B is 28.28 V. If the frequency of the current is 1 kHz,
 - (i) Find the voltage across the resistor.

[6 marks] [4 marks]

(ii) Draw the phasor diagram.

- c) An 8-pole AC motor is running at a synchronous speed of 750 revolution per minute, what would be supply frequency? [2 marks]
- d) A stepper motor has an angular resolution of 9 degrees per step. Find out the motor speed in rpm if the frequency is 50 Hz. [10 marks]

Total Marks: 25

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FORMULA SHEET

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:

$$R\theta = R0(1 + \alpha \cdot \theta)$$

Ohm's law: V = IR

Power: P = IV

Magnetic flux: $\Phi = BA$

Induced voltage: $V = \Delta \Phi / \Delta t$

$$f = \frac{pn}{120}$$

Magnitude of the Reactance of Inductor L: $X_L = 2\pi f L$

Magnitude of the Reactance of Capacitor *C*: $X_C = \frac{1}{2\pi fC}$

Pythagorean theorem: $c^2 = a^2 + b^2$

Tangent function: tanA=opposite/adjacent

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Module No. EEE4012

Summary Table for Series and Parallel RC Circuits

X _C and R in Series	X_C and R in Parallel
I the same in X_C and R $V_T = \sqrt{V_R^2 + V_C^2}$	V_T the same across X_C and R $I_T = \sqrt{I_R^2 + I_C^2}$
$Z = \sqrt{R^2 + X_C^2} = \frac{V_T}{I}$	$Z_{T} = \frac{V_{T}}{I_{T}}$
V _C lags V _R by 90°	I_C leads I_R by 90°
$\theta = \arctan\left(-\frac{X_C}{R}\right)$	$\theta = \arctan \frac{l_C}{l_R}$

Summary Table for Series and Parallel RL Circuits

X _L and R in Series	X_L and R in Parallel
I the same in X_L and R $V_T = \sqrt{V_R^2 + V_L^2}$	V_T the same across X_L and R $I_T = \sqrt{I_R^2 + I_L^2}$
$Z = \sqrt{R^2 + X_L^2} = \frac{V_T}{I}$	$Z_{T} = \frac{V_{T}}{I_{T}}$
V_R lags V_L by 90°	I _L lags I _R by 90°
$\theta = \arctan \frac{X_L}{R}$	$\theta = \arctan\left(-\frac{I_L}{I_R}\right)$

Three-phase systems:

Delta to Star conversion:

$$R_a = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

$$R_b = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_3 R_1}{R_1 + R_2 + R_3}$$

Star to Delta conversion:

$$\begin{split} R_{1} &= \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{b}} \\ R_{2} &= \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{c}} \\ R_{3} &= \frac{R_{a}R_{b} + R_{b}R_{c} + R_{c}R_{a}}{R_{a}} \end{split}$$

END OF PAPER