ENG10

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

B.ENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

SEMESTER 2 EXAMINATIONS 2023/2024 INSTRUMENTATION AND CONTROL

MODULE NO: EEE5011

Date: Monday 13th May 2024

Time: 10:00 – 12:30

INSTRUCTIONS TO CANDIDATES:There are SIX questions.Answer ANY FOUR questions.Answer ANY FOUR questions.All questions carry equal
marks.Marks for parts of questions are shown
in brackets.Belectronic calculators may be used
provided that data and program
storage memory is cleared prior to the
examination.CANDIDATES REQUIRE:Formula Sheet (attached).

Question 1

(a)

A first order system has the following transfer function:

 $\frac{40}{s+10}$

State the steady state value and the time constant.

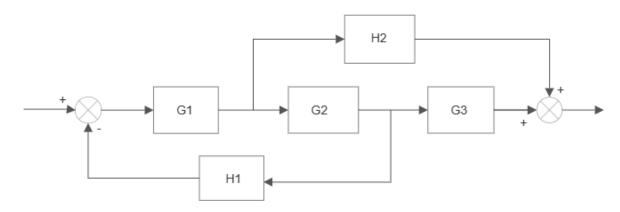
[2 marks]

Find the response of the system to a unit ramp input.

[8 marks]

(b) A second order system has the following transfer function:

$$\frac{200}{s^2 + 20s + 900}$$


(i) Find the natural frequency ω_n , the damping ratio ζ and the damped frequency ω_d . [6 marks]

- (ii) Calculate the peak time and the rise time for the system [6 marks]
- (iii) Calculate the percentage overshoot for the system. [3 marks]

Total 25 marks

Question 2

(a) Consider the system block diagram shown in Figure 2a.

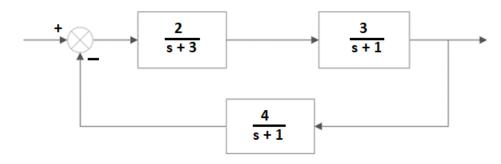


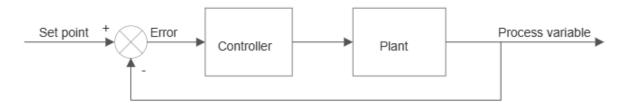
Figure 2a

By applying the rules for block reduction, find the transfer function to represent this system as a single block.

[15 marks]

(b) Consider the system block diagram shown in Figure 2b.

Calculate and simplify the closed loop transfer function for the system.


State, with reasons, whether or not the system is stable.

[10 marks]

Total 25 marks

Question 3

Consider the control system shown in figure 3:

Figure 3

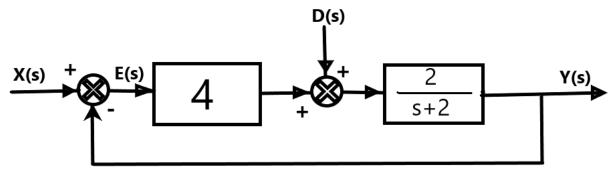
The controller is an integral controller, and the plant is

$$G(s) = \frac{4}{s+6}$$

and the system uses unity negative feedback. We wish to design the controller so that the overshoot does not exceed 5% and the steady state error for a unit ramp input does not exceed 0.5.

(i)	Write down the open loop transfer function of the system.	[2 marks]
-----	---	-----------

- (ii) Find an expression for the steady state error for unit ramp input in terms of *K*. [4 marks]
- (iii) Find the range of values for *K* for which the steady state error does not exceed 0.5. [3 marks]
 (iv) Find the *closed* loop transfer function of the system. [4 marks]

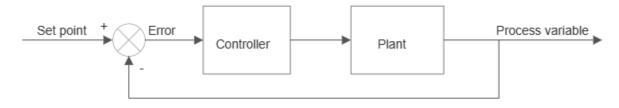

(v) Find expressions for the natural frequency and the damping ratio in terms of *K*. [5 marks]

- (vi) Find the value of the damping ratio that gives an overshoot of 5%. [3 marks]
- (vii) Find the range of values for *K* for which the overshoot does not exceed 5%. [4 marks]

Total 25 marks Please turn the page...

Question 4

(a) Consider the control system with disturbance shown in figure 4a


Figure 4a

Find an expression for the error E(s) in terms of the input X(s) and the disturbance

signal D(s). [9 marks]

If the input is a unit step, and the disturbance is a step of size 0.4, find the value of the steady state error. [6 marks]

(b) Consider the control system shown in figure 4b.

Figure 4b

The controller is an integral controller K/s, and the plant is

$$G(s) = \frac{2}{s^2 + 10s + 4}$$

- (i) Find the closed loop transfer function for the system. [6 marks]
- (ii) Find the range of values for *K* for which the system is stable. [4 marks]

Total 25 marks Please turn the page...

Question 5

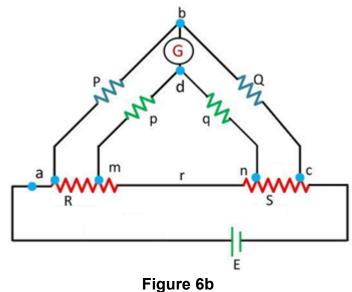
a) Explain the term accuracy in instrumentation device systems and how the accuracy value of a device can be achieved. [6 marks]
b) In a temperature measuring system, the transfer function is 5 mV/k ± 2.1%, and the accuracy of the transmitter is ±1.7%. What is the system accuracy?

[3 marks]

c) Explain what the time constant factor of a sensor is in terms of first-order and second-order responses. [6 marks]

A linear pressure sensor has a time constant of 3.1 seconds, and a transfer function of 29 mV/kPa. What is the output after 1.3 seconds, if the pressure changes from 17 to 39 kPa? What is the pressure error at this time? [7 marks]

e) The pressure in a system has a range from 0 to 75 kPa. What is the current equivalent of 27 kPa, if the transducer output range is from 4 to 20 mA? [3 marks]


Total 25 marks

Question 6

a) Explain what a Galvanometer is and describe its key working principles.

[8 marks]

b) Given the drawing of a Kelvin bridge shown below, draw its equivalent using the Star-Delta transformation. [8 marks]

c) Derive the expression to find the unknown resistance R of a Kelvin Double bridge under the balanced condition, in which the current in galvanometer = 0A.

Total 25 marks

END OF QUESTIONS

A FORMULA SHEET APPEARS OVER THE PAGE

FORMULA SHEET

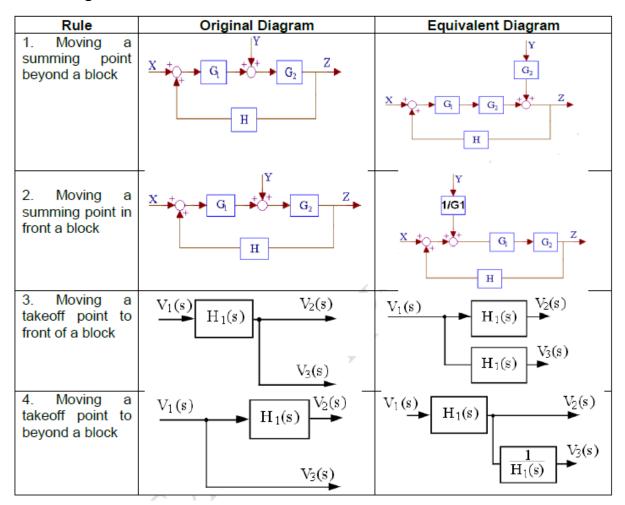
Parameters of second order systems

Relation between ω_n , ω_d and ζ :

$$\omega_d = \sqrt{1 - \zeta^2} \omega_n \qquad \omega_n = \frac{1}{\sqrt{1 - \zeta^2}} \omega_d \qquad \zeta = \sqrt{1 - \left(\frac{\omega_d}{\omega_n}\right)^2}$$

Relation between damping ratio and percentage overshoot:

$$overshoot = 100exp\left(-rac{\zeta\pi}{\sqrt{1-\zeta^2}}
ight) \qquad \qquad \zeta = \sqrt{rac{(\ln A)^2}{\pi^2 + (\ln A)^2}}$$


Rise time, peak time, and 5% and 2% settling times:

$$t_{rise} = \frac{\pi - \phi}{\omega_d} \text{ where } \phi = \cos^{-1}(\zeta) \qquad t_{peak} = \frac{\pi}{\omega_d}$$
$$t_{settle,5\%} \approx \frac{3}{\zeta \omega_n} \qquad t_{settle,2\%} \approx \frac{4}{\zeta \omega_n}$$

Table of Laplace Transforms

f(t)	$F(s) = \int_0^\infty f(t) e^{-st} dt$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
e ^{-at}	$\frac{1}{\frac{s+a}{\omega}}$
$\sin \omega t$	$\overline{s^2 + \omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$e^{-at}f(t)$	F(s+a)
f'(t)	sF(s) - f(0)

Block diagrams

Blocks with feedback

G(s) is forward path, H(s) is feedback path.

Negative feedback	G(s)	
Negative feedback:	$\overline{1+G(s)H(s)}$	
Desitive feedbeek	G(s)	
Positive feedback:	1-G(s)H(s)	

Three-phase systems:

Delta to Star conversion:

Star to Delta conversion:

$$\begin{split} R_{a} &= \frac{R_{1}R_{2}}{R_{1}+R_{2}+R_{3}} \\ R_{b} &= \frac{R_{2}R_{3}}{R_{1}+R_{2}+R_{3}} \\ R_{c} &= \frac{R_{3}R_{1}}{R_{1}+R_{2}+R_{3}} \end{split}$$

$$\begin{split} R_1 &= \frac{R_a R_b + R_b R_c + R_c R_a}{R_b} \\ R_2 &= \frac{R_a R_b + R_b R_c + R_c R_a}{R_c} \\ R_3 &= \frac{R_a R_b + R_b R_c + R_c R_a}{R_a} \end{split}$$

END OF PAPER