UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2023/2024

HYDROLOGY AND ENVIRONMENTAL ENGINEERING

MODULE NO. CIE5017

Date: 14TH May 2024

Time: 1:00pm-3:00pm

INSTRUCTIONS TO CANDIDATES:

There are <u>FIVE</u> questions on this paper.

Answer Any <u>FOUR</u> questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet / supplementary information is provided at the end of question paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Question 1

a) Explain in detail the components of the hydrological cycle with a neat sketch

(13 Marks)

b) At a particular time, the storage in a river is 50 x10³ m³. At that time, the inflow into the reach is 12 m³/s and the outflow is 18 m³/s. After two hours, the inflow and the outflow are 20 m³/s and 22 m³/s respectively. Determine the change in storage for two hours period and the storage volume after two hours.

(12 Marks)

Total 25 marks

Question 2

a) Explain in detail the key components of solid waste management.

(13 marks)

b) Discuss the risks associated with poor management of solid waste.

(12 marks)

Total 25 marks

Question 3

- a) What is Air Quality Index (AQI)? Explain how AQI is divided into six levels of health concern to the air quality Index values and colours.
- **b)** Explain in detail the particle pollution, its health effects and actions to protect the health as per the AQI values.

(12 marks)

(8 marks)

c) If the levels of ozone of average of 1-hour and 8-hours are 0.1621 ppm and 0.0783 ppm respectively, calculate the AQI using Break Points of AQI provided in Table Q3 shown below and state the level of concern.

(5 marks)

O₃ (ppm) 8-hour	O₃ (ppm) 1-hour¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m ³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 - 12.0	0-54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070	-	12.1 - 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 - 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 150.4) ³	255 - 354	12.5 - 15.4	(186 - 304) ⁴	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(150.5 - (250.4) ³	355 - 424	15.5 - 30.4	(305 - 604) ⁴	650 - 1249	201 - 300	Very unhealthy
(2)	0.405 - 0.504	(250.5 - (350.4) ³	425 - 504	30.5 - 40.4	(605 - 804) ⁴	1250 - 1649	301 - 400	Hazardous
(²)	0.505 - 0.604	(350.5 - 500.4) ³	505 - 604	40.5 - 50.4	(805 - 1004)⁴	1650 - 2049	401 - 500	Hazardous

Table Q3. Break Points for AQI

Total 25 marks PLEASE TURN THE PAGE

Question 4

a) What does a Biological Oxygen Demand (BOD) test measure? Why must samples containing caustic alkalinity or acidity be adjusted before preparing BOD dilutions?

(5 marks)

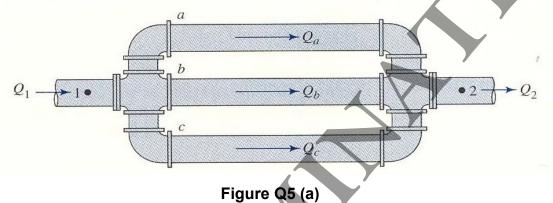
- b) A water treatment plant receives hard water with slight odour and colour. Sketch a flow chart identifying the sequence of water treatment processes used in this scenario. Explain the two basic types of processes used in water treatment plants with two examples each.
- c) Sketch and briefly explain the purpose and operation of the following water and wastewater treatment processes:
 - i) A first stage rapid sand filter

(4 marks)

(12 marks)

ii) A Dissolved Air Floatation (DAF) unit

(4 marks)


Total 25 marks

PLEASE TURN THE PAGE

Page 4 of 15

Question 5

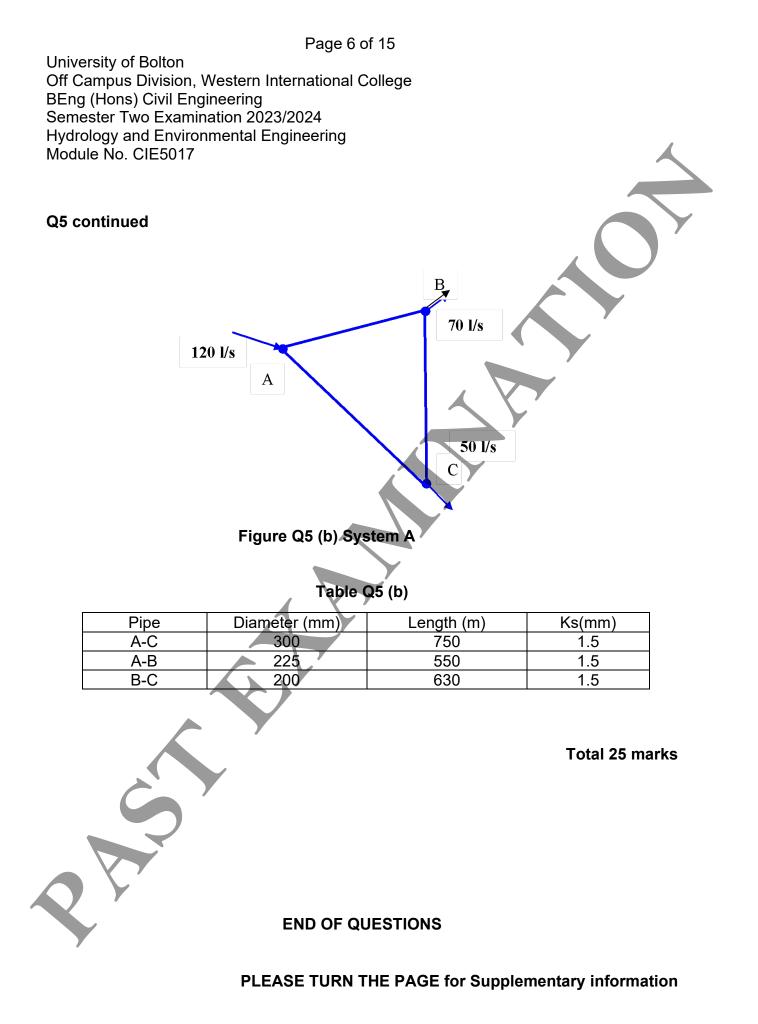
a) A complex pipe system is shown in Figure Q5 (a). Apply the basic hydraulic principles used in complex pipeline analysis and outline the relationship of flow parameters using appropriate equations.

(10 marks)

- b) The network details of System A is shown in Figure Q5b) and Table Q5 (b) on page 6.
 - i) Make a sensible first estimate for the flows in System A and briefly explain the reasons for your selections.

(5 marks)

ii) Ascertain a first estimate of the level of error in your initial assumptions using
 Table 3 on Page 16.


(5 marks)

iii) Explain how you have determined the errors, what the errors mean, and what you would be looking for in a correct solution.

(5 marks) Total 25 marks

HRS Tables provided on pages 7-9.

Q5 continues over the page PLEASE TURN THE PAGE

Page 7 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

Supplementary information: HRS Tables

				i= ie	= 1·500m 0·00015 t hydraulic	o 0.004 gradi	ent =	full	er (or se bore co ocities i	nditions		8 continued
				1 i	n 6667 to	1 in 2	50		harges i			
dient	Pipe di	ameters 75	in mm: 80	100	125	150	175	200	225	250	275	300
00075 1333	0.108 0.212	0.145 0.641	0.152 0.764	0.178 1.397	0.208 2.550	0.236 4.163	0.262	0.286	0.310	0.333 16.329	0.354 21.051	0.375 26.539
0080	0.112	0.150	0.157	0.184	0.215	0.244	0.270	0.296	0.320	0.344 16.873	0.366 21.752	0.388
00085	0.115	0.155	0.162 0.815	0.190 1.490	0.222	0.251	0.279 6.710	0.305 9.591	0.330 13.137	0.354 17.401	0.378	0.400
0090 1111	0.119	0.159 0.704	0.167	0.195	0.228	0.259 4.570	0.287	0.314 9.874	0.340	0.365	0.389 23.092	0.412
0095 1053	0.122	0.164	0.172	0.201	0.235	0.266	0.295	0.323	0.350	0.375	0.400	29.109 0.423
0100	0.240	0.724	0.863	1.578 0.206	2.879 0.241	4.698 0.273	7.101 0.303	10.149 0.332	13.901 0.359	18.412 0.385	23.734 0.410	29.918 0.434
0110 909	0.246	0.744	0.886	1.620 0.217	2.955 0.253	4.822 0.286	7.289 0.318	10.417 0.348	0.377	18.897 0.404	24.359	30.705 0.456
0120	0.259	0.781 0.185	0.930 0.194	1.701 0.226	3.102 0.264	5.062 0.299	7.651 0.332	10.934 0.364	14.975 0.394	19.833	25.564 0.450	32.223
833	0.271	0.817 0.193	0.973	1.778 0.236	3.243 0.275	5.292 0.312	7.997 0.346	11.428 0.379	15.651 0.410	20.727	26.715 0.468	33.674 0.496
769	0.282	0.851	1.014 0.209	1.853 0.245	3.379 0.286	5.512 0.324	8.329 0.360	11.902	16.299 0.426	21.584 0.457	27.820 0.486	35.065 0.515
714	0.293	0.884	1.053 0.217	1.924 0.254	3.509 0.296	5.723 0.335	8.648	12.358	16.923	22.410	28.883	36.404
667	0.304	0.916	1.091	1.993	3.634	5.928	8.957	12.798	0.441	0.473 23.206	0.504 29.908	0.533 37.696
0160 625	0.160	0.214 0.947	0.224 1.127	0.262 2.060	0.306 3.755	0.347	0.385 9.255	0.421 13.223	0.455 18.107	0.488 23.976	0.520 30.900	0.551 38.946
0170 588	0.165	0.221 0.977	0.231 1.163	0.271 2.125	0.316 3.873	0.357 6.317	0.397 9.544	0.434 13.636	0.470 18.671	0.504 24.723	0.536 31.862	0.568 40.157
0180 556	0.170	0.228 1.006	0.238 1.198	0.279 2.187	0.325 3.987	0.368 6.503	0.408 9.824	0.447 14.036	0.483 19.219	0.518 25.447	0.552 32.795	0.585 41.333
0190 526	0.175 0.343	0.234 1.034	0.245 1.231	0.286 2.249	0.334	0.378	0.420	0.459 14.426	0.497 19.752	0.533 26.152	0.567 33.703	0.601 42.476
0200 500	0.180	0.240 1.061	0.251	0.294	0.343 4.207	0.388 6.860	0.431 10.363	0.471 14.805	0.510 20.271	0.547	0.582 34.588	0.617 43.590
0220 455	0.189	0.252	0.264	0.308 2.423	0.360	0.407	0.452 10.876	0.495 15.537	0.535 21.271	0.574 28.163	0.611 36.293	0.647 45.738
0240 417	0.197	0.264	0.276 1.387	0.322 2.533	0.376	0.426 7.524	0.473 11.365	0.517	0.559	0.599 29.428	0.638 37.922	0.676 47.790
0260 385	0.205	0.275	0.287	0.336	0.392	0.443	0.492	0.538	0.582	0.624	0.665	0.704
0280 357	0.213	1.213 0.285	0.298	2.638 0.349	4.806 0.407	7.836 0.460	11.835 0.511	16.906 0.559	23.144 0.604	30.641 0.648	39.484 0.690	49.758 0.731
0300 333	0.419	1.260 0.295	1.500 0.309	2.739 0.361	4.990 0.421	8.135 0.477	12.287 0.529	17.551 0.578	24.026 0.626	31.808 0.671	40.988 0.715	51.652 0.757
0320	0.434	1.305 0.305	1.554 0.319	0.373	5.168 0.435	8.424 0.493	12.723 0.546	18.173 0.598	24.877 0.646	32.935 0.693	42.438 0.738	53.479 0.782
313	0.449	1.349 0.315	1.606 0.329	2.931 0.385	5.339 0.449	8.704 0.508	13.145 0.563	18.775 0.616	25.701 0.666	34.024 0.715	43.841 0.761	0.806
294	0.463	1.391	1.656 0.339	3.023 0.396	5.506 0.462	8.975 0.523	13.554 0.580	19.358 0.634	26.499 0.686	35.080 0.736	45.201 0.783	56.959 0.829
278	0.477	0.333	1.705 0.349	3.112 0.407	5.668	9.238	13.951	19.925	27.274	36.105	46.522	58.623
263	0.490	1.472	1.753	3.198	0.475 5.825	0.537 9.494	0.596 14.337	0.652 20.476	0.705 28.028	0.756 37.102	0.805 47.806	0.852 60.240
	Loeffic 14	ent for 20	part-fu 20	ll pipes 25	35	40	45	50	60	70	70	80
						40	45	50	00			i < 0.004

Page 8 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

8	ks = 1. i = 0.00	500mm 4 to 0·1			√ater(or full bore			i l				
continued	same an Summer	aulic gr) to 1 in			velocitie discharge		S					
Gradient	Pipe di	ameters 75	in mm : 80	100	125	150	175	200	225	250	275	300
0.00400	0.256	0.342	0.358	0.418	0.487	0.551 9.743	0.612	0.669	0.723 28.762	0.776	0.826	0.875
0.00420	0.263	0.351	0.367	0.428	0.499	0.565	0.627	0.686	0.741 29.478	0.795	0.846	0.896
0.00440	0.269	0.359	0.376	0.439	0.511 6.273	0.579	0.642	0.702	0.759	0.814	0.867	0.917
0.00460	0.275	0.367	0.384	0.449	0.523	0.592	0.656	0.718	0.776 30.860	0.832	0.886	0.938
0.00480	0.281	0.375 1.658	0.393 1.973	0.458	0.534	0.605	0.671	0.733 23.035	0.793	0.850	0.905	0.959 67.756
0.00500	0.287	0.383	0.401 2.014	0.468	0.545	0.617	0.685	0.748 23.514	0.809 32.184	0.868	0.924	0.978
0.00550	0.301	0.402	0.421 2.114	0.491 3.857	0.572	0.648	0.718	0.785	0.849 33.766	0.911	0.970	1.026
0.00600	0.315	0.420	0.440	0.513	0.598 7.337	0.677	0.750	0.820	0.887	0.951	1.013	1.072 75.802
0.00650	0.328	0.438 1.933	0.458	0.534	0.623	0.704	0.781	0.854 26.836	0.924	0.990	1.054	1.116 78.915
0.00700	0.341	0.454	0.475	0.555	0.646	0.731	0.811	0.887 27.856	0.959	1.028	1.095	1.159 81.910
0.00750	0.353	0.470 2.078	0.492	0.574	0.669	0.757	0.840	0.918	0.993 39.470	1.064 52.241	1.133	1.200 84.799
0.00800	0.365	0.486	0.508	0.593	0.691	0.782	0.867	0.948	1.025	1.099 53.964	1.170	1.239 87.594
0.00850	0.376	0.501	0.524 2.635	0.612	0.713	0.806	0.894	0.978 30.715	1.057	1.133 55.634	1.207	1.278
0.00900	0.387	0.516	0.540	0.630	0.734	0.830 14.666	0.920 22.139	1.006 31.611	1.088	1.166	1.242	1.315
0.00950	0.398	0.530	0.555	0.647	0.75 4 9.251	0.853	0.946	1.034 32.482	1.118 44.451	1.199 58.832	1.276 75.792	1.351 95.491
0.01000	0.408	0.544	0.569 2.861	0.664	0.774	0.875	0.971 23.345	1.061 33.331	1.147	1.230 60.368	1.309 77.770	1.386 97.983
0.01100	0.429	0.571	0.597	0.697	0.812	0.918 16.225	1.018	1.113	1.203 47.850	1.290 63.329	1.374 81.583	1.454 102.786
0.01200	0.448	0.597	0.624	0.728	0.848	0.959 16.951	1.064 25.586	1.163 36.530	1.257 49.988 •	1.348 66.158	1.435	1.519 107.375
0.01300	0.466	0.621	0.650	0.758	0.883 10.834	0.999 17.648	1.107	1.210 38.029	1.309 52.039	1.403 68.871	1.494 88.721	1.581 111.776
0.01400	0.484	0.645	0.674 3.390	0.787	0.916 11.246	1.037 18.318	1.149	1.256	1.358 54.012	1.456 71.482	1.550 92.083	1.641 116.012
0.01500	0.501	0.668	0.698	0.815	0.949	1.073 18.964	1.190	1.301 40.864	1.406 55.916	1.508 74.001	1.605 95.328	1.699 120.099
0.01600	0.518	0.690	0.721 3.626	0.842	0.980 12.027	1.109 19.590	1.229 29.567	1.344	1.453	1.557 76.437	1.658 98.466	1.755 124.051
0.01700	0.534	0.711 3.142	0.744 3.739	0.868	1.010	1.143 20.196	1.267 30.481	1.385 43.515	1.498 59.543	1.605 78.799	1.709 101.507	1.809 127.882
0,01800 1/ 56	0.550	0.732 3.234	0.766	0.893 7.014	1.040	1.176 20.784	1.304 31.369	1.425 44.782	1.541 61.276	1.652 81.092	1.759 104.460	1.862 131.602
0.01900	0.565	0.752 3.323	0.787	0.918 7.208	1.069 13.113	1.209 21.357	1.340 32.232	1.465 46.014	1.584 62.961	1.697 83.322	1.807 107.332	1.913 135.220
Ť	-	cient for										
	18	25	30	35	45	50	60	70	80	90	100	110

Page 9 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

					s = 1.500 = 0.004				ter (or s l bore c			8	
					hydrau in 250 t			ve disc	ocities charges i	in m/s in l/s		continue	d
	×												
Gradient	Pipe 50	diameters 75	in mm : 80	100	125	150	175	200	225	250	275	300	7
0.02000	0.580	0.772 3.410	0.807	0.942 7.396	1.096 13.456	1.240 21.914	1.375 33.073	1.503	1.625 64.603	1.742 85.494	1.854 110.130	1.963 138.743	
0.02200	0.608	0.810 3.578	0.847	0.988	1.150	1.301 22.989	1.442 34.695	1.577 49.528	1.704 67.768	1.827 89.682	1.945	2.059	
0.02400	0.636	0.846 3.738	0.885	1.032 8.106	1.202	1.359 24.016	1.507 36.244	1.647	1.780 70.792	1.908 93.682	2.032	2.151 152.026	
0.02600	0.662	0.881 3.892	0.921	1.075	1.251	1.415 25.001	1.569 37.730	1.714 53.859	1.853 73.693	1.987 97,520	2.115	2.239 158.251	
0.02800	0.687	0.914 4.040	0.956	1.115 8.760	1.298 15.934	1.468 25.949	1.628 39.159	1.779	1.924	2.062	2.195 130.373	2.324	
0.03000 1/ 33	0.711	0.947 4.182	0.990	1.155	1.344 16.496	1.520 26.863	1.685 40.539	1.842	1.991 79.176	2.134	2.272	2.405 170.021	
0.03200	0.735	0.978	1.023	1.193 9.368	1.389	1.570 27.748	1.741 41.873	1.903 59.772	2.057 81.781	2.205	2.347	2.484	
0.03400	0.758	1.008	1.054	1.230 9.657	1.431	1.619	1.795	1.961 61.617	2.120 84.305	2.273	2.419 143.701	2.561 181.029	
0.03600	0.780	1.038	1.085	1.265	1.473 18.078	1.666 29.437	1.847	2.018	2.182 86.756	2.339	2.490	2.635 186.289	
0.03800	0.801	1.066	1.115	1.300	1.514 18.575	1.712	1.898	2.074	2.242 89.140	2.403	2.558	2.708 191.406	
0.04000	0.822	1.094	1.144 5.751	1.334 10.479	1.553 19.059	1.756 31.035	1.947	2.128	2.300 91.462	2.466 121.030	2.625 155.895	2.778 196.389	
0.04200	0.843	1.121 4.953	1.173	1.367	1.592 19.532	1.800	1.995 47.993	(2.181 -68.505	2.357 93.726	2.527	2.690 159.754	2.847 201.250	
0.04400	0.863	1.148	1.200	1.400	1.629	1.842	2.042 49.125	2.232	2.413 95.938	2.586 126.951	2.753	2.914 205.996	
0.04600	0.882	1.174	1.227	1.431 11.241	1.666 20.444	1.884 33.290	2.088 50.233	2.282	2.467 98.099	2.644 129.811	2.815	2.980 210.635	
0.04800	0.901	1.199 5.297	1.254 6.303	1.462 11.484	1.702 20.886	1.924 34.008	2.133 51.316	2.332 73.247	2.520 100.214	2.701 132.610	2.876 170.809	3.044 215.174	
0.05000 1/ 20	0.920	1.224 5.407	1.280 6.434	1.492	1.737 21.318	1.964 34.711	2.178 52.377	2.380	2.573 102.286	2.757	2.935 174.339	3.107 219.620	
0.05500	0.965	1.284 5.672	1.343 6.749	1.566	1.822 22.362	2.060	2.284	2.496	2.698	2.892	3.079	3.259 230.361	
0.06000	1.009	1.341 5.926	1.403 7.050	1.635 12.845	1.904 23.360	2.152 38.034	2.386 57.390	2.607 81.916	2.819 112.071	3.021 148.297	3.216 191.013	3.404 240.623	
0.06500	1.050 2.062	1.396 6.169	1.460 7.340	1.702	1.981 24.316	2.240 39.592	2.484 59.740	2.714 85.268	2.934 116.657	3.145	3.347 198.827	3.543 250.466	
0.07000	1.090 2.140	1.449 6.402	1.516 7.618	1.767	2.057	2.325	2.578	2.817 88.494	3.045 121.070	3.264	3.474 206.346	3.677 259.937	
0.07500	1.128 2.216	1.500 6.628	1.569 7.886	1.829	2.129 26.126	2.407 42.536	2.668	2.916. 91.607	3.152 125.328	3.378 165.836	3.596 213.601	3.807 269.075	
0.08000	1.166	1.550 6.846	1.621 8.146	1.889 14.839	2.199 26.985	2.486 43.935	2.756 66.291	3.012 94.617	3.256 129.446	3.489 171.285	3.714 220.618	3.932 277.914	
0.08500	1.202 2.359	1.598 7.058	1.671 8.397	1.948 15.297	2.267 27.818	2.563	2.841 68.336	3.105 97.535	3.356 133.437	3.597 176.565	3.829 227.419	4.053 286.480	
0.09000	1.237 2.428	1.644 7.263	1.7.19 8.642	2.004	2.333 28.626	2.637 46.606	2.924 70.321	3.195 100.368	3.453 137.313	3.701 181.693	3.940 234.023	4.171 294.798	
0.09500	1.271 2.495	1.689 7.463	1.767 8.879	2.059	2.397 29.413	2.710 47.887	3.004	3.283 103.124	3.548 141.082	3.803 186.680	4.048 240.446	4.285 302.888	
0.10000	1.304 2.560	1.733 7.658	1.813 9.111	2.113	2.459 30.179	2.780 49.133	3.082 74.133	3.368	3.641 144.754	3.902 191.537	4.154 246.701	4.396 310.768	
	Coeff	icient for	part-f	ull pipe	es :								
	20	35	35	45	50	70	80	90	100	110	120	130	
			4						ks	= 1·500r	nm	i < 0·1	

PLEASE TURN THE PAGE FOR FORMULAE SHEET

Page 10 of 15 University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017 **Formulae Sheet** Water balance equation is $P - E - T - Ro = \Delta S$ Index of pollutant, $I_p = \frac{I_{Hi} - I_{Lo}}{BP_{Hi} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}$ $h_f = S_o L$ $z_1 + \frac{v_1^2}{2g} + \frac{P_1}{\rho g} = z_2 + \frac{v_2^2}{2g} + \frac{P_2}{\rho g} + h_f$ Q = A v $h_{\rm f} = \frac{\lambda L v^2}{2 g d}$ $h_{\rm f} = \frac{\lambda L Q^2}{12.1 d^5}$ $\operatorname{Re} = \underline{v \, d} = \underline{\rho \, v \, d}$ μ $v = \frac{\mu}{\rho}$ $Q = 2.78 A_{p} i$ PLEASE TURN THE PAGE

RAINFALL TABLE

TABLE 7

	Ra	tes of Rainfall	in mm/h for	a range of du	ration and retur	n period for			
					lited Kingdom	*			
			National Grid	d Reference 4	833E 1633N				
					201 La 1944 -				
			RETURN	PERIOD (YE	ARS				
	DURATION	1	2	5	10	20	50	100	Y
	2.0 MINS	85.6	93.4	120.5	138.3 130.4	158 149	187	213 202	
	2.5 MINS	76.5	87.5	113.4 107.2	123.4	141	168	192	
	3.0 MINS	66.3	82.3	107.2	117.3	135	161	184	
	3.5 MINS	62.8	77.B	96.8	111.8	128	154	176	
	4.0 MINS	59.6	73.8	95.9	110.8	127	152	174	
	4.1 MINS	59.1 58.5	73.1 72.3	95.0	109.8	126	151	173	
	4.2 MINS 4.3 MINS	57.9	71.6	94.1	108.8	125	150	172	
		57.4	71.0	93.2	107.9	124	149	170	
	4.4 MINS 4.5 MINS	56.9	70.3	92.4	106.9	123	148	169	
	4.6 MINS	56.3	69.6	91.6	106.0	122	146	168	
	4.7 MINS	65.B	*69.0	90.8	105.1	121	145	166	
	4.8 MINS	55.3	68.3	90.0	104.2	120	144	165	
	4.9 MINS	54.8	67.7	89.2	103.4	119	143	164	
	5.0 MINS	54.3	67.1	88.5	102.5	118	142	163	
	5.1 MINS	53.9	66.5	87.7	101.7	117	141	162	
	5.2 MINS	53.4	65.9	87.0	100.9	116	140	160	
	5.3 MINS	53.0	65.4	86.3	100,1	115	139	159	
	5.4 MINS	52.5	64.B	85.6	99.3	115	138	158	
	5.5 MINS	52.1	64.3	84.9	98.5	114	137	157	
	5.6 MINS	51.7	63.7	84.2	97 <i>.</i> 8	113	136	156	
	5.7 MINS	51.2	63.2	83.5	97.0	112	135	155	
	5.8 MINS	50.8	62.7	82.9	96.3	111	134	154	
	5.9 MINS	\$50.4	62.2	82.3	95.6	110	133	153	
	6.0 MINS	50.0	61.7	81.6	94.9	110	132	152	
	6.2 MINS	49.3	60.7	80.4	93.5	108	130	150	
	6.4 MINS	48.5	59.B	79.2	92.2	107	129	148	
	6.6 MINS	47.B	58.9	78.1	9.09	105	127	146	
	6.8 MINS	47.1	58.0	77.0	89.6	104	125	144	
	7.0 MINS	46.4	67.2	75.9	88.4	102	124	143	
	7.2 MINS	45.8	56.4	74.9	87.3	101	122	141 139	
	7.4 MINS	45.2	55.6	73.9	86.1 85.0	100 99	121 119	139	
	7.6 MINS	44.5 44.0	54.8 54.1	72.9	84.0	97	118	136	
	7.8 MINS 8.0 MINS	43.4	53.4	71.0	82.9	96	117	135	
	8.2 MINS	42.8	52.7	70.1	81.9	95	115	133	
	B.4 MINS	42.3	52.0	69.3	81.0	94	114	132	
	8.6 MINS	41.8	51.4	68.4	80.0	93	113	131	
	8.8 MINS	41.2	50.7	67.6	79.1	92	112	129	
	9.0 MINS	40.8	50.1	66.8	78.2	91	110	128	
	9.2 MINS	40.3	49.5	66.0	77.3	90	109	127	
	9.4 MINS	39.9	49.0	65.3	76.4	89	108	125	
	9.6 MINS	39.4	48.4	64.6	75.6	88	107	124	
	8.8 MINS	39.0	47.9	63.8	74.8	87	106	123	
	10.0 MINS	38.6	47.4	63.1	74.0	86	105	121	
	10.5 MINS	37.6	46.1	61.5	72.1	84	102	118	
	11.0 MINS	36.7	44.9	69.9	70.2	82	100	116	
	11.5 MINS	35 B	43.8	58.4	68.5	80	97	113	
	12.0 MINS	35.0	42.8	57.0	66.9	78	95	111	
	12.5 MINS	34.2	41.B	55.7	65.4	76	93	108	
	13.0 MINS	33.4	40.B	54.4	64.0	75	91	106	
	13.5 MINS	32.7	39.9	53.3	62.6 61.3	73 72	89 87	104	
	14.0 MINS	32.0	39.1 38.3	52.1 51.0	60.0	72	87	102	
	14.5 MINS	31.4	38.3	50.0	58.8	69	84	98	
	15.0 MINS 16.0 MINS	30.8 29.6	36.1	48.1	56.6	66	81	94	
	17.0 MINS	28.6	34.8	46.3	54.6	64	78	91	
	18.0 MINS	27.6	33.5	44.7	52.7	62	76	68	
	19.0 MINS	26.7	32.4	43.2	51.0	60	73	85	
	20.0 MINS	25.9	31.4	41.B	49.3	58	71	83	
7			055 8						

Page 12 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

				k s i = (= 1·500 0·00015	mm to 0.004	4		er (or se bore co			8	
					hydraul 1 6667 t	-		vel	ocities i harges i	n m/s		continued	
Gradient	Pipe di	iameters 75	in mm : 80	100	125	150	175	200	225	250	275	300	
0.00075	0.108 0.212	0.145 0.641	0.152 0.764	0.178 1.397	0.208 2.550	0.236 4.163	0.262	0.286	0.310	0.333	0.354 21.051	0.375 26.539	
0.00080	0.112	0.150	0.157	0.184	0.215	0.244	0.270	0.296	0.320	0.344	0.366	0.388	
0.00085	0.115	0.155	0.162	0.190 1.490	0.222	0.251	0.279 6.710	0.305	0.330	0.354	0.378	0.400	
0.00090	0.119	0.159	0.167	0.195	0.228	0.259	0.287	0.314	0.340	0.365	0.389	0.412	
0.00095	0.122	0.164	0.839	0.201	2.800 0.235	4.570 0.266	6.908 0.295	9.874 0.323	13.524 0.350	17.913 0.375	23.092 0.400	29.109 0.423	
0.00100	0.240	0.724	0.863	1.578 0.206	2.879 0.241	4.698 0.273	7.101 0.303	10.149 0.332	13.901 0.359	18.412 0.385	23.734 0.410	29.918 0.434	
0.00110	0.246	0.744	0.886	1.620 0.217	2.955 0.253	4.822 0.286	7.289 0.318	10.417 0.348	14.268 0.377	18.897 0.404	24.359 0.430	30.705 0.456	
0.00120	0.259	0.781 0.185	0.930 0.194	1.701 0.226	3.102 0.264	5.062 0.299	7.651 0.332	10.934 0.364	14.975 0.394	19.833 0.422	25.564 0.450	32.223 0.476	
0.00130	0.271	0.817 0.193	0.973	1.778 0.236	3.243 0.275	5.292 0.312	7.997 0.346	11.428 0.379	15.651 0.410	20.727 0.440	26.715 0.468	33.674 0.496	
0.00140	0.282	0.851	1.014 0.209	1.853 0.245	3.379 0.286	5.512 0.324	8.329 0.360	11.902 0.393	16.299 0.426	21.584 0.457	27.820 0.486	35.065 0.515	
0.00150	0.293	0.884	1.053 0.217	1.924 0.254	3.509 0.296	5.723 0.335	8.648	12.358 0.407	16.923 0.441	22.410 0.473	28.883 0.504	36.404 0.533	
0.00160	0.304	0.916	1.091	1.993	3.634 0.306	5.928 0.347	8.957 0.385	12.798 0.421	17.525 0.455	23.206 0.488	29.908 0.520	37.696 0.551	
1/ 625	0.314	0.947	1.127	2.060 0.271	3.755 0.316	6.125 0.357	9.255	13.223 0.434	18.107	23.976	30.900	38.946	
0.00170	0.324	0.977	0.238	2.125 0.279	3.873 0.325	6.317 0.368	9.544	13.636	18.671	24.723	31.862	0.568	
0.00180	0.334	1.006	1.198	2.187	3.987	6.503	9.824	0.447	0.483	0.518	0.552 32.795	0.585 41.333	
0.00190	0.175	0.234	0.245	0.286 2,249	0.334 4.099	0.378 6.684	0.420	0.459 14.426	0.497 19.752	0.533 26.152	0.567 33.703	0.601 42.476	
0.00200 1/ 500	0.180	0.240 1.061	0.251	0.294	0.343	0.388 6.860	0.431 10.363	0.471 14.805	0.510 20.271	0.547 26.839	0.582 34.588	0.617 43.590	
0.00220	0.189	0.252 1.114	0.264	0.308 2.423	0.360 4.415	0.407 7.200	0.452 10.876	0.495 15.537	0.535 21.271	0.574 28.163	0.611 36.293	0.647 45.738	
0.00240	0.197 0.387	0.264 1.165	0.276 1.387	0.322 2.533	0.376 4.615	0.426 7.524	0.473 11.365	0.517 16.235	0.559 22.227	0.599 29.428	0.638 37.922	0.676 47.790	
0.00260 1/ 385	0.205 0.403	0.275 1.213	0.287	0.336 2.638	0.392 4.806	0.443 7.836	0.492 11.835	0.538 16.906	0.582 23.144	0.624 30.641	0.665 39.484	0.704 49.758	
0.00280 1/ 357	0.213 0.419	0.285 1.260	0.298 1.500	0.349 2.739	0.407 4.990	0.460 8.135	0.511 12.287	0.559 17.551	0.604 24.026	0.648 31.808	0.690 40.988	0.731 51.652	
0.00300 1/ 333	0.221 0.434	0.295 1.305	0.309 1.554	0.361 2.837	0.421 5.168	0.477 8.424	0.529 12.723	0.578 18.173	0.626 24.877	0.671 32.935	0.715 42.438	0.757 53.479	
0.00320	0.229	0.305 1.349	0.319 1.606	0.373 2.931	0.435 5.339	0.493 8.704	0.546 13.145	0.598 18.775	0.646 25.701	0.693 34.024	0.738 43.841	0.782 55.246	
0.00340 1/ 294	0.236	0.315 1.391	0.329 1.656	0.385 3.023	0.449 5.506	0.508 8.975	0.563 13.554	0.616 19.358	0.666 26.499	0.715 35.080	0.761 45.201	0.806 56.959	
0.00360	0.243	0.324	0.339 1.705	0.396 3.112	0.462 5.668	0.523 9.238	0.580 13.951	0.634 19.925	0.686	0.736 36.105	0.783 46.522	0.829 58.623	
0.00380	0.250 0.490	0.333	0.349	0.407 3.198	0.475 5.825	0.537 9.494	0.596 14.337	0.652	0.705	0.756 37.102	0.805 47.806	0.852	
	-	ient for		Ill pipes		7.474		20.410	20.020	57.102	41.000	001240	
Y	14	20	20	25	35	40	45	50	60	70	70	80	

Page 13 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

	1·500mm 004 to 0∹	1			sewage conditi						
	draulic g 250 to 1 ii	radient = n 10	. ,	velocitie	es in m/ es in l/s						
Pipe 50	diameter 75	s in mm : 80	100	125	150	175	200	225	250	275	300
0.256		0.358	0.418 3.282	0.487	0.551 9.743	0.612	0.669	0.723 28.762	0.776	0.826 49.057	0.875
0.263		0.367 1.844	0.428 3.365	0.499	0.565 9.986	0.627	0.686 21.536	0.741 29.478	0.795 39.021	0.846	0.896
0.269		0.376 1.888	0.439	0.511 6.273	0.579	0.642	0.702 22.047	0.759 30.177	0.814 39.946	0.867	0.917
0.275		0.384	0.449	0.523	0.592	0.656	0.718	0.776 30.860	0.832	0.886	0.938
0.281		0.393	0.458	0.534 6.555	0.605	0.671	0.733 23.035	0.793 31.529	0.850	0.905	0.959 67.756
0.287	0.383	0.401 2.014	0.468	0.545	0.617	0.685	0.748 23.514	0.809 32.184	0.868	0.924 54.889	0.978
0.301		0.421 2.114	0.491 3.857	0.572	0.648	0.718	0.785	0.849	0.911	0.970	1.026
0.315		0.440	0.513	0.598 7.337	0.677	0.750	0.820	0.887 35.278	0.951	1.013 60.161	1.072
0.328		0.458	0.534	0.623	0.704	0.781	0.854	0.924	0.990 48.614	1.054 62.632	1.116 78.915
0.341		0.475	0.555	0.646	0.731	0.811 19.508	0.887 27.856	0.959	1.028	1.095	1.159 81.910
0.353		0.492 2.474	0.574	0.669	0.757	0.840 20.198	0.918 28.840	0.993 39.470	1.064 52.241	1.133 67.303	1.200 84.799
0.365		0.508	0.593	0.691 8.484	0.782	0.867	0.948	1.025	1.099 53.964	1.170 69.522	1.239 87.594
0.376		0.524 2.635	0.612	0.713 8.747	0.806	0.894	0.978 30.715	1.057	1.133	1.207	1.278
0.387		0.540	0.630	0.734 9.002	0.830 14.666	0,920	1.006 31.611	1.088	1.166	1.242 73.761	1.315 92.933
0.398		0.555	0.647	0.754	0.853 15.071	0.946	1.034 32.482	1.118 44.451	1.199 58.832	1.276 75.792	1.351 95.491
0.408		0.569 2.861	0.664 5.216	0.774 9.493	0.875	0.971 23.345	1.061	1.147	1.230 60.368	1.309 77.770	1.386 97.983
0.429		0.597 3.002	0.697	0.812 9.960	0.918	1.018	1.113 34.967	1.203 47.850	1.290 63.329	1.374 81.583	1.454 102.786
0.448		0.624	0.728 5.718	0.848	0.959 16.951	1.064	1.163 36.530	1.257 49.988 •	1.348 66.158	1.435 85.226	1.519 107.375
0.466		0.650 3.266	0.758 5.954	0.883 10.834	0.999 17.648	1.107	1.210 38.029	1.309 52.039	1.403 68.871	1.494 88.721	1.581 111.776
0.484		0.674 3.390	0.787 6.180	0.916 11.246	1.037 18.318	1.149 27.648	1.256 39.472	1.358 54.012	1.456 71.482	1.550 92.083	1.641 116.012
0.501		0.698	0.815	0.949 11.643	1.073 18.964	1.190 28.623	1.301 40.864	1.406 55.916	1.508 74.001	1 .605 95.328	1.699 120.099
0.518		0.721 3.626	0.842	0.980	1.109 19.590	1.229 29.567	1.344	1.453 57.758	1.557 76.437	1.658 98.466	1.755 124.051
0.534		0.744 3.739	0.868 6.815	1.010 12.400	1.143 20.196	1.267 30.481	1.385 43.515	1.498 59.543	1.605 78.799	1.709 101.507	1.809 127.882
0.55		0.766 3.848	0.893 7.014	1.040	1.176 20.784	1.304 31.369	1.425 44.782	1.541 61.276	1.652 81.092	1.759 104.460	1.862 131.602
0.565		0.787 3.954	0.918 7.208	1.069 13.113	1.209 21.357	1.340 32.232	1.465 46.014	1.584 62.961	1.697 83.322	1.807 107.332	1.913 135.220
Coef	ficient f	or part-f	ull pipe	2 S :							
18	3 25	30	35	45	50	60	70	80	90	100	110

Page 14 of 15

University of Bolton Off Campus Division, Western International College BEng (Hons) Civil Engineering Semester Two Examination 2023/2024 Hydrology and Environmental Engineering Module No. CIE5017

			i =	s = 1.500 = 0.004 f	o 0·1				ewage) a condition		8 continu		
				hydrau in 250 to	-		vel disc	velocities in m/s discharges in l/s					
Pipe 50	diameters 75	in m.m.: 80	100	125	150	175	200	225	250	275	300		
0.580	0.772 3.410	0.807	0.942	1.096 13.456	1.240 21.914	1.375 33.073	1.503	1.625	1.742	1.854 110.130	1.963 138.743		
0.608	0.810 3.578	0.847	0.988	1.150	1.301 22.989	1.442 34.695	1.577 49.528	1.704	1.827 89.682	1.945	2.059		
0.636	0.846 3.738	0.885	1.032 8.106	1.202	1.359	1.507 36.244	1.647	1.780 70.792	1.908 93.682	2.032 120.675	2.151		
0.662	0.881 3.892	0.921 4.631	1.075	1.251	1.415 25.001	1.569 37.730	1.714 53.859	1.853 73.693	1.987 97.520	2.115 125.618	2.239		
0.687	0.914 4.040	0.956	1.115 8.760	1.298	1.468	1.628 39.159	1.779	1.924	2.062	2.195 130.373	2.324		
0.711	0.947	0.990	1.155	1.344 16.496	1.520 26.863	1.685	1.842 57.868	1.991 79.176	2.134 104.775	2.272	2.405 170.021		
0.735	0.978	1.023	1.193 9.368	1.389	1.570 27.748	1.741 41.873	1.903 59.772	2.057 81.781	2.205	2.347	2.484		
0.758	1.008	1.054 5.300	1.230 9.657	1.431 17.566	1.619	1.795 43.166	1.961 61.617	2.120 84.305	2.273	2.419 143.701	2.561		
0.780	1.038 4.584	1.085	1.265	1.473 18.078	1.666 29.437	1.847	2.018 63.409	2.182 86.756	2.339	2.490	2.635		
0.801	1.066	1.115 5.605	1.300 10.212	1.514 18.575	1.712 30.247	1.898	2.074	2.242 89.140	2.403	2.558	2.708		
0.822	1.094 4.833	1.144 5.751	1.334 10.479	1.553 19.059	1.756 31.035	1.947 46.832	2.128	2.300 91.462	2.466 121.030	2.625 155.895	2.778		
0.843	1.121 4.953	1.173	1.367 10.739	1.592 19.532	1.800 31.805	1.995 47.993	2.181	2.357 93.726	2.527	2.690 159.754	2.847		
0.863	1.148 5.071	1.200 6.033	1.400 10.993	1.629 19.993	1.842 32.555	2.042	2.232 70.121	2.413 95.938	2.586 126.951	2.753 163:522	2.914 205.996		
0.882	1.174 5.185	1.227 6.170	1.431 11.241	1.666 20.444	1.884 33.290	2.088 50.233	2.282	2.467 98.099	2.644 129.811	2.815 167.205	2.980 210.635		
0.901	1.199 5.297	1.254 6.303	1.462 11.484	1.702 20.886	1.924 34.008	2.133 51.316	2.332	2.520 100.214	2.701 132.610	2.876 170.809	3.044		
0.920	1.224 5.407	1.280 6.434	1.492 11.721	1.737 21.318	1.964 34.711	2.178 52.377	2.380 74.762	2.573 102.286	2.757 135.350	2.935 174.339	3.107 219.620		
0.965	1.284 5.672	1.343 6.749	1.566	1.822 22.362	2.060 36.411	2.284	2.496 78.420	2.698 107.290	2.892 141.971	3.079 182.866	3.259 230.361		
1.009	1.341 5.926	1.403 7.050	1.635 12.845	1.904 23.360	2.152 38.034	2.386 57.390	2.607 81.916	2.819	3.021 148.297	3.216 191.013	3.404 240.623		
1.050 2.062	1.396 6.169	1.460 7.340	1.702	1.981 24.316	2.240 39.592	2.484 59.740	2.714 85.268	2.934	3.145 154.365	3.347 198.827	3.543		
1.090 2.140	1.449 6.402	1.516 7.618	1.767 13.877	2.057 25.237	2.325 41.090	2.578	2.817 88.494	3.045 121.070	3.264 160.203	3.474 206.346	3.677 259.937		
1.128	1.500 6.628	1.569 7.886	1.829	2.129 26.126	2.407 42.536	2.668 64.182	2.916. 91.607	3.152 125.328	3.378 165.836	3.596 213.601	3.807 269.075		
1.166 2.289	1.550 6.846	1.621 8.146	1.889 14.839	2.199 26.985	2.486 43.935	2.756 66.291	3.012 94.617	3.256 129.446	3.489 171.285	3.714 220.618	3.932 277.914		
1.202	1.598 7.058	1.671 8.397	1.948 15.297	2.267 27.818	2.563 45.290	2.841 68.336	3.105 97.535	3.356 133.437	3.597 176.565	3.829 227.419	4.053 286.480		
1.237	1.644 7.263	1.719 84642	2.004	2.333 28.626	2.637 46.606	2.924 70.321	3.195 100.368	3.453 137.313	3.701 181.693	3.940 234.023	4.171 294.798		
1.271 2.495	1.689 7.463	1.767 8.879	2.059 16.175	2.397 29.413	2.710 47.887	3.004 72.252	3.283 103.124	3.548 141.082	3.803 186.680	4.048 240.446	4.285 302.888		
1.304	1.733 7.658	1.813 9.111	2.113 16.596	2.459 30.179	2.780 49.133	3.082 74.133	3.368 105.808	3.641 144.754	3.902 191.537	4.154 246.701	4.396 310.768		
Coeff 20	icient for 35				-								
	33	35	45	50	70	80	90	100	110	120	130		

41

Supplementary information continued Candidates ID No. **TO BE HANDED IN WITH ANSWER BOOK** Table 3. Hardy Cross Method Candidates ID No. TO BE HANDED IN WITH ANSWER BOOK 1st Adjustment 2nd Adjustment Pipe Dia Length (**mm**) **(m)** Q h_f/Q Q hf (m^{3}/sec) (m^{3}/sec) (m) A-C 300 750 A-B 225 550 B-C 200 630 $\Delta Q =$ **END OF PAPER**