UNIVERSITY OF BOLTON

NATIONAL CENTRE FOR MOTORSPORT ENGINEERING

BEng (HONS) AUTOMOTIVE PERFORMANCE ENGINEERING (MOTORSPORT)

SEMESTER 1 EXAMINATION 2023/2024

ENGINEERING MATHEMATICS
MODULE NUMBER MSP4022

Date Wednesday 10 ${ }^{\text {th }}$ January 2024
 Time: 2:00pm - 4:00pm

INSTRUCTIONS TO CANDIDATES

This paper has FIVE questions. Answer ALL FIVE questions.

The maximum marks possible for each question and part question are shown in brackets.

Electronic calculators may be used if data and program storage memory is cleared prior to the examination.

Mobile phones or tablets may not be used as calculators.

There is a formula sheet at the back of the paper.

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Question 1

a) Given the vectors $\boldsymbol{a}=2 \boldsymbol{i}-3 \boldsymbol{j}+5 \boldsymbol{k}$ and $\boldsymbol{b}=7 \boldsymbol{i}+2 \boldsymbol{j}-6 \boldsymbol{k}$ find the angle between the vectors \boldsymbol{a} and \boldsymbol{b}.
b) Find the moment of force \boldsymbol{F} about the point O , as depicted in Figure 1.

Figure 1

Total for Question 1 (20 marks)

Question 2

a) If $\boldsymbol{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 4 & 0\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{ccc}4 & -12 & 7 \\ -3 & 9 & -5 \\ 1 & -2 & 1\end{array}\right)$, find $\boldsymbol{A} \boldsymbol{B}$ and, without
performing further calculations, write down $\boldsymbol{B A}$.
b) Given the following pair of simultaneous linear equations:

$$
\begin{aligned}
2 u_{1}+u_{2} & =4 \\
u_{1}-3 u_{2} & =-5
\end{aligned}
$$

write these in the matrix form $\boldsymbol{K} \boldsymbol{u}=\boldsymbol{f}$, find \boldsymbol{K}^{-1} and hence find u_{1} and u_{2}.
(10 marks)
Total for Question 2 (20 marks)

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Question 3

Given the two complex numbers $z_{1}=-2-3 j$ and $z_{2}=2-4 j$:
a) Display z_{1} and $\overline{z_{1}}$ on an Argand diagram.
b) Find:
i) $\quad 2 z_{1}-3 z_{2}$.
ii) $z_{1} z_{2}$.
iii) $z_{1} \overline{z_{1}}$.
c) Working to 2 decimal places, convert z_{1} and z_{2} to polar form and hence find:
i) $\frac{z_{1}}{z_{2}}$
ii) $\quad z_{1}{ }^{2}$
d) Find the complex roots of the quadratic equation:

$$
x^{2}+2 x+5=0
$$

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Question 4

a) Differentiate $y=x^{3}$ from first principles:
b) Calculate the derivative of the following functions:
i) $y=e^{3 x} \sin 4 x$
ii) $y=\cos \left(x^{2}\right)$
c) Find and classify the stationary points of the following function:

$$
y=x^{3}+3 x^{2}-24 x+11
$$

Total for Question 4 (20 marks)

Question 5

Evaluate the following integrals:
i) $\int\left(3 x^{2}-2 x+1\right) d x$

$$
\text { ii) } \quad \int_{0}^{\pi}(3 \cos 3 x-2 \sin 2 x) d x
$$

iii) $\int_{1}^{3} t e^{-3 t} d t \quad$ giving your answer correct to 3 decimal places.
(10 marks)
Total for Question 5 (20 marks)

END OF QUESTIONS

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Formula Sheet

Quadratic Equations

The equation:

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
\text { has solutions: }
\end{gathered}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Vectors Given $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ and $\boldsymbol{b}=b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}$ then:

$$
\begin{gathered}
|\boldsymbol{a}|=\sqrt{a_{1}{ }^{2}+a_{2}^{2}+a_{3}{ }^{2}} \\
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta \\
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\boldsymbol{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
\text { where }\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
\end{gathered}
$$

Matrices

(2×2) Matrices
The determinant of a (2×2) matrix A is given by:

$$
A=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \Longrightarrow \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

The inverse of the (2×2) matrix A is given by:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) .
$$

PLEASE TURN THE PAGE

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Table of Derivatives and Integrals
In the table below, m, n are any real numbers.

PLEASE TURN THE PAGE

National Centre of Motorsports Engineering
BEng (Hons) Automotive Engineering (Motorsport)
Semester One Exam 2023/24
Engineering Mathematics
Module No. MSP4022

Calculus Rules - Differentiation

Product Rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Quotient Rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{1}{v^{2}}\left[v \frac{d u}{d x}-u \frac{d v}{d x}\right]
$$

Chain Rule:

$$
\frac{d}{d x}[y(u(x))]=\frac{d y}{d u} \frac{d u}{d x}
$$

Rules of Integration

$$
\text { INTEGRATION BY PARTS: } \quad \int_{x=a}^{b} f(x) g^{\prime}(x) d x=[f(x) g(x)]_{x=a}^{b}-\int_{x=a}^{b} f^{\prime}(x) g(x) d x
$$

Local Maxima and Minima of a Function

A curve defined by $y=f(x)$ in terms of some function f has stationary points where $f^{\prime}(x)=0$. These are then classified using the Second Derivative Test:

Let $x=a$ be a stationary point of $f(x)$ then:

$$
f^{\prime \prime}(a)=0 \quad \Longrightarrow x=a \text { is a local minimum }
$$

$$
f^{\prime \prime}(a)<0 \quad \Longrightarrow \quad x=a \text { is a local maximum }
$$

$$
f^{\prime \prime}(a)=0 \quad \Longrightarrow \quad \text { the test is inconclusive. }
$$

END OF FORMULA SHEET

END OF PAPER

