UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG(HONS) ELECTRICAL AND ELECTRONIC

ENGINEERING
SEMESTER ONE EXAMINATION 2023/24 ENGINEERING ELECTROMAGNETISM

MODULE NO: EEE6012

Date: Saturday 6 January 2024
Time: 10:00 AM - 12:30 PM

There are FIVE questions on this paper.

Answer ANY FOUR questions.

All questions carry equal marks.

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 1

a) Find the electric field resulting from a given electric potential.

$$
V=6 x y-2 x z+z
$$

b) Given that electric flux density

$$
D=z \rho \operatorname{Cos}^{2} \emptyset a_{z} C / m^{2}
$$

Calculate the charge density at $(1, \Pi / 4,3)$ and the total charge enclosed by the cylinder of radius $1 m$ with $-2 \leq z \leq 2 m$.
c) If $J=\frac{1}{r^{3}}\left(2 \cos \cos \theta a_{r}+\sin \sin \theta \quad a_{\theta}\right) A / m^{2}$, calculate the current passing through a hemispherical shell of radius $20 \mathrm{~cm}, 0 \leq \Pi \leq \frac{\Pi}{2}, 0<\emptyset<2 \Pi$.
d) Given the magnetic vector potential

$$
A=\frac{-\rho^{2}}{4} a_{z} W b / m
$$

Calculate the total magnetic flux crossing the surface

$$
\emptyset=\Pi / 2,1 \leq \rho \leq 2 m, 0 \leq z \leq 5 m
$$

(5 marks)

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 2

Find the amplitude of the displacement current density.
i) adjacent to an automobile antenna where the magnetic field intensity of an

FM signal is

$$
H_{x}=0.15 \operatorname{Cos}\left[3.12\left(3 * 10^{8} t-y\right)\right] A / m
$$

ii) in the air space at a point within a large power distribution transformer, when

$$
B=0.8 \operatorname{Cos}\left[1.257 * 10^{-6}\left(3 * 10^{8} t-x\right)\right] \vec{y} T
$$

iii) within a large, oil filled power capacitor where $\epsilon_{r}=5$ and

$$
\begin{equation*}
E=0.9 \operatorname{Cos}\left[1.257 * 10^{-6}\left(3 * 10^{8} t-z \sqrt{5}\right)\right] \vec{x} M V / m \tag{7marks}
\end{equation*}
$$

iv) in a metallic conductor at 60 Hz , if $\epsilon=\epsilon_{0}, \mu=\mu_{0}, \sigma=5.8 * 10^{7} \mathrm{~S} / \mathrm{m}$ and

$$
J=\sin \sin (377 t-117.1 z) \vec{x} M A / m^{2}
$$

Question 3

a) The electric field of an electromagnetic wave is given as

$$
\vec{E}=E_{0} \hat{\jmath} \sin \frac{\Pi z}{z_{0}} \cos \cos (k x-\omega t)
$$

Question 3 continued over... Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 3 continued...

Evaluate the field given above.
(4 marks)
b) An electromagnetic wave propagates along the x direction while the magnetic field oscillates at a frequency of $10^{10} \mathrm{~Hz}$ and has an amplitude of $10-5 \mathrm{~T}$, acting along the y direction. Compute the wavelength of the electromagnetic wave and provide the expression for electric field in this case.
c) The magnetic field of a plane electromagnetic wave is described as follows

$$
\vec{B}=B_{O} \sin \sin (k x-\omega t) \hat{\jmath}
$$

i) Calculate the wave's wavelength λ.
ii) Compute the electric field E corresponding to the magnetic field. Illustrate the direction of the unit vector.
iii) Determine the magnitude and direction of the Poynting vector related to this wave.

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 3 continued...

d) Compute the energy intensity of the standing electromagnetic wave given by

$$
E_{y}(x, t)=2 E_{0} \cos \cos k x \cos \omega t \text { and } B_{Z}(x, t)=2 B_{0} \sin \sin k x \sin \omega t
$$

Question 4.

a) Consider a lossless transmission line with a characteristic impedance of 75Ω. The line is terminated with a load impedance of $100+j 150 \Omega$.
i.Calculate the reflection coefficient at the load, the standing wave ratio on the transmission line, and the input impedance at a distance of 0.4λ from the load.
ii.Evaluate the values obtained in part (i) using smith chart provided in page 7. Determine the locations of the first minimum voltage and the first maximum voltage from the load.
(7 marks)
iii.
b)

Question 4 continued over...
Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 4 continued...

The transmission line shown in Figure is 40 m long operating at 500 MHz and has $V_{g}=15<0^{\circ} \mathrm{vrms}, Z_{0}=30+\mathrm{j} 60 \Omega$, and $V_{L}=5<-48^{\circ} \mathrm{Vrms}, Z_{g}=0$. If the line is matched to the load and $Z_{g}=0$. Calculate the propogation constant and the sending-end current $I_{i n}$ and voltage $V_{i n}$.

Question 5

a) An antenna is designed with operating frequency 7 GHz , featuring a circular aperture with a diameter of 3 m . The antenna exhibits a radiation resistance of 70Ω and a loss resistance of 6Ω.
i.Discuss the factors influencing the radiated power of the antenna. Given a current draw is 10 A , calculate the power radiated by the antenna.
ii.Calculate key antenna characteristics, including capture area, gain in decibels, and directivity. Analyse how these metrics collectively contribute to defining the performance of the antenna.
iii.Discuss the relationship between Q factor and the antenna's bandwidth and calculate the Q factor, taking into account the specified bandwidth of 4 MHz .
(3 marks)

Question 5 continued over...

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Question 5 continued...

b) A radar operating in the S-band transmits at a frequency of 5 GHz with a power output of 400 kW .
i.Calculate the signal power density at distances of 100 and 400 nautical miles, considering the effective area of the radar antenna to be $12 \mathrm{~m}^{2}$
(7 marks)
ii.Consider a target with an effective area of $20 \mathrm{~m}^{2}$ located at a range of 300 nautical miles. Evaluate the power of the reflected signal received by the radar from this target.

END OF QUESTIONS

Page 8 of 20
University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24

Engineering Electromagnetism

Module No. EEE6012

Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

EQUATION SHEET

CIRCULAR CYLINDRICAL COORDINATES (ρ, ϕ, z)

$$
\rho=\sqrt{x^{2}+y^{2}}, \quad \phi=\tan ^{-1} \frac{y}{x}, \quad z=z
$$

$$
\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]
$$

SPHERICAL COORDINATES (r, θ, ϕ)

$\left[\begin{array}{c}A_{r} \\ A_{\theta} \\ A_{\phi}\end{array}\right]=\left[\begin{array}{llr}\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0\end{array}\right]\left[\begin{array}{c}A_{x} \\ A_{y} \\ A_{z}\end{array}\right]$

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]
$$

Page 10 of 20
University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

DIFFERENTIAL LENGTH, AREA, AND VOLUME

A. Cartesian Coordinate Systems

1. Differential displacement is given by

$$
d \mathbf{l}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}
$$

2. Differential normal surface area is given by

$$
\begin{array}{r}
d \mathbf{S}= \\
d y d z \mathbf{a}_{x} \\
d x d z \mathbf{a}_{y} \\
d x d y \mathbf{a}_{z}
\end{array}
$$

3. Differential volume is given by

$$
d v=d x d y d z
$$

B. Cylindrical Coordinate Systems

1. Differential displacement is given by

$$
d \mathbf{l}=d \rho \mathbf{a}_{\rho}+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z}
$$

2. Differential normal surface area is given by

$$
\begin{aligned}
d \mathbf{S}= & \rho d \phi d z \mathbf{a}_{\rho} \\
& d \rho d z \mathbf{a}_{\phi} \\
& \rho d \rho d \phi \mathbf{a}_{z}
\end{aligned}
$$

and illustrated in Figure 3.4.
3. Differential volume is given by

$$
d v=\rho d \rho d \phi d z
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

C. Spherical Coordinate Systems

2. The differential normal surface area is

$$
\begin{aligned}
d \mathbf{S}= & r^{2} \sin \theta d \theta d \phi \mathbf{a}_{r} \\
& r \sin \theta d r d \phi \mathbf{a}_{\theta} \\
& r d r d \theta \mathbf{a}_{\phi}
\end{aligned}
$$

3. The differential volume is

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

DEL OPERATOR

$$
\nabla=\frac{\partial}{\partial x} \mathbf{a}_{x}+\frac{\partial}{\partial y} \mathbf{a}_{y}+\frac{\partial}{\partial z} \mathbf{a}_{z}
$$

$$
\nabla=\mathbf{a}_{\rho} \frac{\partial}{\partial \rho}+\mathbf{a}_{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi}+\mathbf{a}_{z} \frac{\partial}{\partial z}
$$

$$
\nabla=\mathbf{a}_{r} \frac{\partial}{\partial r}+\mathbf{a}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\mathbf{a}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

GRADIENT OF A SCALAR

$$
\nabla V=\frac{\partial V}{\partial x} \mathbf{a}_{x}+\frac{\partial V}{\partial y} \mathbf{a}_{y}+\frac{\partial V}{\partial z} \mathbf{a}_{z}
$$

$\nabla V=\frac{\partial V}{\partial \rho} \mathbf{a}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}+\frac{\partial V}{\partial z} \mathbf{a}_{z}$

$$
\nabla V=\frac{\partial V}{\partial r} \mathbf{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

DIVERGENCE OF A VECTOR

$$
\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

$$
\nabla \cdot \mathbf{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}
$$

$$
\nabla \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1<\partial \mathbf{A}_{\phi}}{r \sin \theta \partial \phi}
$$

CURL OF A VECTOR

$$
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|
$$

$$
\nabla \times \mathbf{A}=\frac{1}{\rho}\left|\begin{array}{ccc}
\mathbf{a}_{\rho} & \rho_{\mathbf{Z}_{\phi}} & \mathbf{a}_{z} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z}
\end{array}\right|
$$

$$
\left|\begin{array}{lll}
A_{\rho} & \rho^{A_{\phi}} & A_{z}
\end{array}\right|
$$

$\nabla \times \mathbf{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{lll}\mathbf{a}_{r} & r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_{r} & r A_{\theta} & r \sin \theta A_{\phi}\end{array}\right|$

$$
\oint_{S} \mathbf{A} \cdot d \mathbf{S}=\int_{v} \boldsymbol{\nabla} \cdot \mathbf{A} d v=0
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}}
$$

$$
\mathbf{E}=\frac{\mathbf{F}}{Q}
$$

$$
\mathbf{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \mathbf{a}_{r}
$$

$\mathbf{E}=\int_{S} \frac{\rho_{S} d S \mathbf{a}_{R}}{4 \pi \varepsilon_{\mathbf{o}} r^{2}}=\int_{S} \frac{\rho_{S} d S\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{4 \pi \varepsilon_{\mathrm{o}}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}$
$Q=\int_{L} \rho_{L} d l \quad$ for line charge
$Q=\int_{S} \rho_{S} d S \quad$ for surface charge
$Q=\int_{v} \rho_{v} d v \quad$ for volume charge
$\mathrm{D}=\varepsilon_{0} \mathrm{E}$

ELECTRIC FLUX DENSITY

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}
$$

$$
Q=\oint_{\delta} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v
$$

$$
\rho_{v}=\nabla \cdot \mathbf{D}
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

$$
\mathbf{E}=-\nabla V
$$

electric flux through a surface S is

$$
\Psi=\int_{S} \mathbf{D} \cdot d \mathbf{S}
$$

$$
I=\oint \mathbf{J} \cdot d \mathbf{S}=\int \nabla \cdot \mathbf{J} d v
$$

$$
\begin{aligned}
& \quad \mathbf{J}=\sigma \mathbf{E} \\
& \rho_{v}=n e \\
& J=\sigma E \\
& \quad \mathbf{D}=\varepsilon_{0}\left(1+\chi_{e}\right) \mathbf{E}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}
\end{aligned}
$$

```
D=\varepsilonE
```

$$
\varepsilon=\varepsilon_{\mathrm{o}} \varepsilon_{r}
$$

$$
\nabla^{2} V=-\frac{\rho_{v}}{\varepsilon}
$$

$$
\mathrm{F}=\int_{v} \rho_{v} \mathrm{E} d v
$$

$\nabla \times H=J$

$$
\mathbf{B}=\mu_{o} \mathbf{H}
$$

$$
\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{S}=0
$$

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{S}=\int_{v} \nabla \cdot \mathbf{B} d v=0
$$

$$
\nabla \cdot \mathbf{D}=\rho_{v}
$$

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v
$$

$$
\nabla \cdot \mathbf{B}=0
$$

$$
\nabla \times \mathbf{E}=\mathbf{0}
$$

$$
\begin{aligned}
& \oint_{S} \mathbf{B} \cdot d \mathbf{S}=0 \\
& \oint_{L} \mathbf{E} \cdot d \mathbf{l}=0
\end{aligned}
$$

$$
\nabla \times \mathbf{H}=\mathbf{J}
$$

$$
\oint_{L} \mathbf{H} \cdot d \mathbf{l}=\int_{\mathbf{S}} \mathbf{J} \cdot \mathbf{d} \mathbf{S}
$$

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\nabla \cdot \mathbf{A}=0
$$

$$
\mathbf{F}=\oint_{L} I d \mathbf{I} \times \mathbf{B}
$$

$$
V_{\mathrm{emf}}=\oint_{L} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

$$
F_{m}=I \ell B
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

$$
\beta=\omega \sqrt{\mu \varepsilon}=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}=\frac{\omega}{c} \sqrt{\varepsilon_{r}}
$$

$$
\mathscr{P}=\mathbf{E} \times \mathbf{H}
$$

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
k=\beta=\omega \sqrt{\mu_{0} \varepsilon_{0}}=\frac{\omega}{c}=\frac{2 \pi}{\lambda}
$$

$$
\mathscr{P}_{\text {ave }}=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right)=\frac{E_{o}^{2}}{2 \eta} \mathbf{a}_{k}
$$

$\lambda=2 \Pi / k$
$\mathrm{C}=\mathrm{f} \lambda$
$\mathrm{C}=\mathrm{E}_{0} / \mathrm{B}_{0}$
$\mathrm{K}=\omega / \mathrm{c}$
$\omega=2 \Pi$
$\underline{S}=\frac{\underline{E} x \underline{B}}{\mu_{0}}$

TRANSMISSION LINES

$1 \mathrm{~Np}=8.686 \mathrm{db}$
Propagation constant
$\gamma=\alpha+j \beta$
Wave velocity, $u=\frac{\omega \omega}{\beta \beta}=f \lambda$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Wavelength, $\lambda=\frac{2 \pi 2 \pi}{\beta \beta}$
Input impedance

$$
\begin{aligned}
& Z_{\text {in }}=Z_{o} \quad\left[\frac{Z_{L}+z_{0} \tanh \gamma \ell}{Z_{0}+Z_{L} \tanh \gamma \ell}\right] \\
& \tanh (x \pm j y)=\frac{\sinh 2 x}{\cosh 2 x+\cos 2 y} \quad \pm j \frac{\sin 2 y}{\cosh 2 x+\cos 2 y} \\
& Z_{\text {in }}=\frac{V_{s}(z)}{I_{s}(z)}=\frac{Z_{0}\left(V_{0}^{+}+V_{0}^{-}\right)}{V_{0}^{+}-V_{0}^{-}}
\end{aligned}
$$

Voltage and current at any point z

$$
V_{s} V_{s}(z)=V_{0}^{+} e^{-\gamma z} V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} V_{0}^{-} e^{\gamma z}
$$

$$
I_{s} I_{s}(z)=\frac{v_{0}^{+}}{z_{0}} e^{-\gamma z} \frac{V_{0}^{+}}{z_{0}} e^{-\gamma z}-\frac{v_{0}^{-}}{z_{0}} e^{\gamma z} \frac{V_{0}^{-}}{z_{0}} e^{\gamma z}
$$

$$
\left.V_{0}^{+}=\frac{1}{2} V_{0}^{+}=\frac{1}{2}\left(V_{0}+Z_{0} I_{o}\right) V_{0}+Z_{0} I_{0}\right)
$$

$$
\left.V_{0}^{-}=\frac{1}{2} V_{0}^{-}=\frac{1}{2}\left(V_{0}-Z_{0} I_{0}\right) V_{0}-Z_{0} I_{0}\right)
$$

Sending end current and voltage
$I_{0}=\frac{V_{g}}{Z_{\text {in }}+Z_{g}}$
$V_{0}=Z_{\text {in }} I_{0}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{g}} V_{g}$
Reflection coefficient
$\Gamma_{L} \Gamma_{L}=\frac{z_{L}-z_{0} z_{L}-z_{0}}{z_{L}+z_{0} z_{L}+z_{0}}$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Standing wave ratio

$$
S=\frac{V_{\max }}{V_{\min }}=\frac{I_{\max }}{I_{\min }}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|}
$$

Antenna

Wavelength
$\lambda=\frac{c}{f}$

Power radiated,
$P_{\text {rad }}$ or $W=I_{\text {rms }}^{2} P_{\text {rad }}$ or $W=I_{r m s}^{2} \times R_{\text {rad }} R_{\text {rad }}$

Effective area,
$A_{e} A_{e}=\frac{\lambda^{2} \lambda^{2}}{4 \pi 4 \pi} \mathrm{D}$

Capture area of a circular aperture,

$$
A_{e}=\frac{\pi D^{2}}{4}
$$

Radiation Efficiency
$\eta=\frac{P_{r a d}}{P_{\text {in }}}=\frac{R_{r a d}}{R_{r a d}+R_{\ell}} \eta=\frac{P_{r a d}}{P_{\text {in }}}=\frac{R_{r a d}}{R_{r a d}+R_{\ell}}$
$\eta_{r}=\frac{P_{r a d}}{P_{\text {in }}}=\frac{R_{r a d}}{R_{r a d}+R_{\ell}}$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Directivity
$\mathrm{D}=\frac{4 \pi U_{\max } 4 \pi U_{\max }}{P_{\text {rad }} P_{\text {rad }}}$
$U_{\max } U_{\max }$ - Radiation intensity
$D=\frac{4 \pi}{\lambda^{2}} A_{e}$

Gain of an Antenna
$G=\eta D$
$\boldsymbol{\eta}$ - Radiation Efficiency
$G=K D K D$
$G=K \frac{4 \pi}{\lambda^{2}} G=K \frac{4 \pi}{\lambda^{2}} A_{e} A_{e}$
K- antenna factor , 1 if no losses present

Gain in $d b, G_{d b} G_{d b}=10 \log _{10} G \log _{10} G$
Q factor
$Q=\frac{f_{r} f_{r}}{\Delta f \Delta f}$
$\Delta f \Delta f$-Bandwidth

1 nautical mile(nm) $=1852 \mathrm{~m}$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2023/24
Engineering Electromagnetism
Module No. EEE6012

Radar power density
$P=\frac{G_{d t} P_{r a d} G_{d t} P_{r a d}}{4 \pi r^{2} 4 \pi r^{2}}$

Power of the reflected signal at the radar
$P_{r}=\frac{A_{e} \sigma G_{d} P_{r a d}}{\left[4 \pi r^{2}\right]^{2}}$

