## UNIVERSITY OF BOLTON

## OFF CAMPUS DIVISION

## WESTERN INTERNATIONAL COLLEGE

 BENG (HONS) CIVIL ENGINEERING
## SEMESTER ONE EXAMINATION 2023/24

## MATHEMATICAL METHODS FOR CIVIL ENGINEERING

## MODULE NO: CIE4022

Date: Saturday 13 January 2024
Time: 10:00 AM - 12:00 PM

INSTRUCTIONS TO CANDIDATES:
There are SIX questions on this paper.
Answer any FIVE questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet $/$ supplementary information is provided at the end of question paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Question 1

a) The deflection of a cantilever beam of a rectangular cross-section subjected to point load at its free end is given by,

$$
y=\frac{P L^{3}}{3 E I}
$$

(i) Rearrange the equation by transposition to find an expression for L.
(ii) If the deflection of the beam (y) is limited to 5 mm , the magnitude of the load (W) is 60 kN , the elastic modulus ( E ) is $210 \mathrm{kN} / \mathrm{mm}^{2}$, and the second moment of area (I) is $33750 \mathrm{~cm}^{4}$, what is the length of the beam (L) in (m)?
b) Evaluate $(3.039)^{4}$ correct to 6 significant figures using the binomial theorem
c) The stress ' f ' $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ in a material of a thick cylinder can be obtained from the equation,

$$
\frac{D}{d}=\sqrt{\frac{(f+p)}{(f-p)}}
$$

Express $p$ in terms of $\mathrm{D}, \mathrm{d}$ and f .

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Question 2

a) Solve the equation for $x$

$$
\log (x-1)+\log (x+8)=2 \log (x+2)
$$

b) Solve the simultaneous equations:

$$
\begin{aligned}
& x-3 y=0 \\
& \frac{x}{3}+y=4
\end{aligned}
$$

c) Solve the following using quadratic formula

$$
2 x(5 x-2)=39
$$

d) Evaluate the below expression,

$$
\left(\log _{2} 64-\log _{2} 128+\log _{2} 32\right)
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Question 3

The velocity ' $v$ ' of a body after varying time intervals ' $t$ ' was measured as shown in
Table 1.
Table 1

| Stress <br> $\mathrm{N} / \mathrm{mm}^{2}$ | Strain <br> $\left(\times 10^{-6}\right)$ |
| :---: | :---: |
| 16.9 | 0 |
| 19 | 40.3 |
| 21.1 | 74 |
| 23.2 | 99.3 |
| 26 | 131.8 |
| 28.1 | 225.7 |

(i) Plot the data from Table 1 on the graph paper provided, with the velocity ' $v$ ' values on the $Y$ - axis and the time ' $t$ ' values on the $X$-axis using an appropriate scale.
(ii) Draw an appropriate trend-line through the points and determine the slope of the graph, $m$.
(iii) Determine from the graph
a) the velocity at 10 s
b) the time at $20 \mathrm{~m} / \mathrm{s}$
(2 marks)
c) the equation of the graph

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester One Examinations 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Question 4

(a) Show that the differential equation If $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$ is satisfied

$$
\text { when } y=x e^{2 x}
$$

(b) The displacement of the slide valve of an engine is given by $\mathrm{x}=2.2 \cos 5 \pi t+3.6 \sin 5 \pi t$. Evaluate the velocity in $\mathrm{m} / \mathrm{s}$ when time $\mathrm{t}=30 \mathrm{~s}$
(5 Marks)
(c) Determine $\int \frac{(1+\theta)^{2}}{\sqrt{\theta}} d \theta$

## Question 5

(a) Evaluate
(i) $\int_{1}^{3}\left(x^{2}-4 x+3\right) d x$
(ii) $\int_{-1}^{2} \frac{2}{3 e^{2 x}} d x$

## Q5 continued over the page... <br> Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Question 5 continued...

(b) If $z=\cos 3 x \sin 4 y$ find
(i) $\frac{\partial z}{\partial x}$
(ii) $\frac{\partial z}{\partial y}$
(c) Determine the area enclosed by the three straight lines

$$
y=3 x, \quad 2 y=x \quad \text { and } \quad y+2 x=5
$$

(12 marks)
Total 20 marks

## Question 6

(a) If $z=\sin x y$ show that $\frac{1}{y} \frac{\partial z}{\partial x}=\frac{1}{x} \frac{\partial z}{\partial y}$
(3 marks)
(b) Pressure ' p ' of a mass of gas is given by $p V=m R T$, where m and R are constants, V is the volume and T the temperature. Find the expressions for $\frac{\partial p}{\partial T}$ and $\frac{\partial p}{\partial V}$
(c) Determine the stationary values of the function $z=12 x^{2}+6 x y+15 y^{2}$ and distinguish between them.

## END OF QUESTIONS

University of Bolton
Off Campus Division, Western International College BEng (Hons) Civil Engineering
Semester One Examination 2023/2024
Mathematical Methods for Civil Engineering
Module No. CIE4022

## Formula Sheet

$$
\begin{aligned}
& \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

Velocity $\mathrm{v}=\frac{d x}{d t}$
Acceleration $\mathrm{a}=\frac{d^{2} x}{d t^{2}}$
$\int u d v=u v-\int v d u$
$\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c$
$\sqrt[n]{a^{m}}=a^{\frac{m}{n}}$

