UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG (HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2023/24

ENGINEERING MODELLING AND ANALYSIS

MODULE NO: AME5014

Date: Saturday 13 January 2024

INSTRUCTIONS TO CANDIDATES:

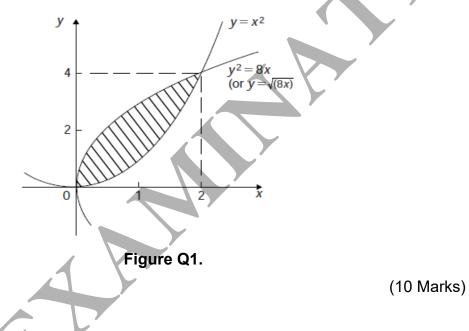
Time: 2:00 PM – 4:00 PM

There are FIVE questions on this paper

Answer ANY FOUR questions only

All questions carry equal marks

Marks for parts of questions are shown in brackets.


Electronic calculators may be used provided that data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

CANDIDATES REQUIRE:

Question 1

a) Determine the area enclosed by the two curves y = x² and y² = 8x as shown in figure Q1 below, if this area is rotated 360° about the x-axis determine the volume of the solid of revolution produced by integration method.

b) The attitude of employees towards the new company policy is tabulated below. The employees are grouped according to their job descriptions: Mechanical engineer, Programmer or System engineer.

Attitude	Mechanical engineer	Programmer	System Engineer
Like	46	168	196
Indifferent	100	572	1148
Dislike	32	248	1076

Question 1 continued over... Please turn the page

Question 1 continued...

Use a Chi-squared test (χ^2) to check the hypothesis that there are variations attitude depending on job description. Test at 5% level.

(15 marks)

Total 25 marks

Question 2

The ordinary differential equation (ODE) describing the displacement y(t) in mm at time t of a voice box simulator can be modelled approximately by the equation below:

$$2\frac{d^2y(t)}{dt^2} + 5\frac{dy}{dt} - 3y = 0$$

Given that when t = 0, y = 4 and dy/dx = 9

- 1) Use Laplace transforms to derive an expression for y(t) and (20 marks)
- 2) Sketch how y(t) varies with time for the first 5 seconds (5 marks)

Total 25 marks

Question 3

The stress σ , in MPa, at a point in a body can be described by the following matrix A relative to the global co-ordinate system xyz.

Question 3 continued over... Please turn the page

Question 3 continued... $\begin{pmatrix} -1 & -1 & 1 \\ -4 & 2 & 4 \\ -1 & 1 & 5 \end{pmatrix}$

a) Using an appropriate technique, determine the Eigen values (i. e., all the principal stresses acting on the body)

(15 marks)

b) Determine also the associated Eigen vector for the largest principal stress.

(10 marks)

Total 25 marks

Question 4

a) (i) Show that if $z = \frac{x}{y} \ln(y)$, then (a) $\frac{\partial z}{\partial y} = x \frac{\partial^2 z}{\partial y \partial x}$

(ii) Evaluate
$$\frac{\partial^2 z}{\partial y^2}$$
 when $x = -3$ and $y = 1$

(15 marks)

Question 4 continued over... Please turn the page

Question 4 continued...

b) Given $z = (4x^2y^3) - (2x^3) + (7y^2)$ find

(ii) $\frac{\partial^2 z}{\partial x \partial y}$

(iv)
$$\frac{\partial^2 z}{\partial y^2}$$

(10 marks)

Total 25 marks

Question 5

a) The second moment of area of a rectangle is given by I =(bl^3)/3. If b and *I* are measured as 40 mm and 90 mm respectively and the measurement errors are -5 mm in b and +8 mm in *I*, find the approximate error in the calculated value of I.

(8 marks)

Question 5 continued over... Please turn the page

Page 6 of 10	
University of Bolton Off Campus Division, Western International College BEng(Hons) Mechanical Engineering Semester 1 Examination 2023/24 Engineering Modelling and analysis Module No. AME5014	
Q5 continued	
b) The pressure p, volume V and temperature T of a g	as are related by pV = kT, where
k is a constant.	
Determine the total differentials	
(a) dp and	
	(8 marks)
(b) dT	
	(9 marks)
	Total 25 marks

END OF QUESTIONS Please turn the page for formula and tables

Page 7 of 10

University of Bolton Off Campus Division, Western International College BEng(Hons) Mechanical Engineering Semester 1 Examination 2023/24 Engineering Modelling and analysis Module No. AME5014

FORMULA SHEET

Laplace transforms table.

f(t)	F(s)	f(t)	F(s)
1	$\frac{1}{s}$	$u_c(t)$	$\frac{e^{-cs}}{s}$
t	$\frac{1}{s^2}$	$\delta(t)$	
t ⁿ	$\frac{n!}{s^{n+1}}$	$\delta(t-c)$	e ^{-cs-}
e ^{at}	$\frac{1}{s-a}$	f'(t)	sF(s)-f(0)
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	<i>f</i> "(<i>t</i>)	$s^2 F(s) - sf(0) - f'(0)$
cos bt	$\frac{s}{s^2 + b^2}$	$(-t)^n f(t)$	$F^{(n)}(s)$
sin bt	$\frac{b}{s^2+b^2}$	$u_c(t)f(t-c)$	$e^{-cs}F(s)$
e ^{at} cos bt	$\frac{s-a}{(s-a)^2+b^2}$	$e^{ct}f(t)$	F(s-c)
e ^{at} sin bt	$\frac{b}{\left(s-a\right)^2+b^2}$	$\delta(t-c)f(t)$	$e^{-cs}f(c)$

Please turn the page

<u>Maxima /Minima</u>

$$Z = F(x,y)$$

Stationary Points

$$\frac{\partial Z}{\partial x} = 0, \quad \frac{\partial Z}{\partial y} = 0$$

$$\Delta = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 z}{\partial x^2}\right) \left(\frac{\partial^2 z}{\partial y^2}\right)$$

Statistics

Chi-square distribution

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Partial Fractions

$$\frac{F(x)}{(x+a)(x+b)} = \frac{A}{(x+a)} + \frac{B}{(x+b)}$$
$$\frac{F(x)}{(x+a)(x+b)^2} = \frac{A}{(x+a)} + \frac{B}{(x+b)} + \frac{C}{(x+b)^2}$$
$$\frac{F(x)}{(x^2+a)} = \frac{Ax+B}{(x^2+a)}$$
$$\frac{Eigenvalues}{|A-\lambda I| = 0}$$

Please turn the page

Eigenvectors

 $(\mathbf{A} - \lambda_r \mathbf{I})\mathbf{x}_r = \mathbf{0}$

Total differential, rates of change and small changes

 $\mathrm{d}z = \frac{\partial z}{\partial u} \,\mathrm{d}u + \frac{\partial z}{\partial v} \,\mathrm{d}v + \frac{\partial z}{\partial w} \,\mathrm{d}w + \cdots$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial \mathrm{u}}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\partial z}{\partial v}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{\partial z}{\partial w}\frac{\mathrm{d}w}{\mathrm{d}t} + \cdots$$

$$\delta z \approx \frac{\partial z}{\partial u} \delta u + \frac{\partial z}{\partial v} \delta v + \frac{\partial z}{\partial w} \delta w + \cdot$$

 $\mathsf{L}\{x\} = \bar{x}$

 $\mathsf{L}\{\dot{x}\} \stackrel{\cdot}{=} s\bar{x} - x_0$

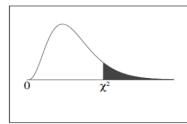
$$\mathsf{L}\{\ddot{x}\} = s^2 \overline{x} \cdot \mathsf{s} x_0 - x_1$$

Volumes of solids.

About X axis

$$V = \int_{a}^{b} \pi y^2 \,\mathrm{d}x$$

About Y axis.


$$V = \int_{c}^{d} \pi x^{2} \, \mathrm{d}y$$

Please turn the page

Page 10 of 10

University of Bolton Off Campus Division, Western International College BEng(Hons) Mechanical Engineering Semester 1 Examination 2023/24 Engineering Modelling and analysis Module No. AME5014

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$

	$d\!f$	$\chi^2_{.995}$	$\chi^2_{.990}$	$\chi^2_{.975}$	$\chi^2_{.950}$	$\chi^2_{.900}$	$\chi^2_{.100}$	$\chi^{2}_{.050}$	$\chi^2_{.025}$	$\chi^2_{.010}$	$\chi^2_{.005}$
ſ	1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
	2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
	3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
	4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
	5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
Ī	6	0.676	0.872	1.237	1.635	2.204	10,645	12.592	14.449	16.812	18.548
	7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
	8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
	9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
	10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
Ī	11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
	12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
	13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
	14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
	15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
Ī	16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
	17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
	18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
	19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
	20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
Ī	21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
	22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
	23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
	24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
	25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
Ī	26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
	27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
	28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
	29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
	30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
V	40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
- 1	50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
	60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
	70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
Ī	80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
	90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
	100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

END OF PAPER