UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG (HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2023/24

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

Answer TWO Questions from Part A and TWO Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

CANDIDATES REQUIRE:

Page 2 of 11
University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

PART A

Question 1

a) Determine the inverse of the following matrix

$$
\left(\begin{array}{rrr}
1 & 5 & -2 \\
3 & -1 & 4 \\
-3 & 6 & -7
\end{array}\right)
$$

(10 marks
b) Two alternating voltages are given by

$$
V_{1}=10 \sin \omega t \text { volts } ; \quad V_{2}=14 \sin \left(\omega t+\frac{\pi}{3}\right) \text { volts }
$$

Determine a sinusoidal expression for the resultant $\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$, using both sine and cosine rules and compare the answer of both rules graphically.
c) Use De Moivre's Theorem to find the 5th power of the complex number $z=2$ (\cos $24^{\circ}+\mathrm{i} \sin 24^{\circ}$). Express the answer in the rectangular form $\mathrm{a}+\mathrm{bi}$

Question 2

a) Use partial Fractions to expand:

$$
Y(s)=\frac{x^{2}+1}{x^{2}-3 x+2}
$$

Question 2 continued over...

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 2 continued...

b) If $£ 100$ is invested at compound interest of 8% per annum, determine (a) the value after ten years, (b) the time, correct to the nearest year, it takes to reach more than £300
(9 marks)
c) Solve the logarithmic equation

$$
\begin{gathered}
\log x^{4}-\log x^{3}=\log 5 x-\log 2 x \\
2.68=\ln (4.87 / x)
\end{gathered}
$$

Question 3

a) The law connecting friction F and load L for an experiment is given by

$$
F=a L-M b,
$$

where $\mathrm{a}, \mathrm{b} \& \mathrm{M}$ are constants. Given that when $\mathrm{F}=6.84 \mathrm{~N} ., \mathrm{L}=2.3 \mathrm{~N}, \mathrm{M}=4.4$ and when $F=1.23 \mathrm{~N}, L=8.5 \mathrm{~N}, \mathrm{M}=6.7$. Find the following:
i) the value of a \& b using determinant method
ii) find the value of F when $L=6.0$ and $M=0$
b) Determine the partial fraction decomposition of the following expression.

$$
\frac{5 x^{2}-2 x-19}{(x+3)(x-1)^{2}}
$$

Question 3 continued over...

Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 3 continued...

c) Solve, the following

$$
\begin{aligned}
& \log (x-1)+\log (x+8)=2 \log (x+2) \\
& \log \left(x^{2}-3\right)-\log (x)=\log (2)
\end{aligned}
$$

(3 marks)
(3 marks)
(Total 25 marks)

PARTB

Question 4

A metallic bar $300 \mathrm{~mm} \times 100 \mathrm{~mm} \times 40 \mathrm{~mm}$ is subjected to a force of 5 kN (tensile), 6 kN (tensile) and 4 kN (tensile) along x, y, and z directions respectively.

Figure Q4. Steel cube block

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 4 continued...

Determine the following:
a) Stresses in x, y and z directions
(6 marks)
b) Assuming Poisson's ratio as 0.25 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force.
(6 marks)
c) If modulus of elasticity $E=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
(8 marks)
d) The change in volume of the block due to loading specified above.

Question 5

a) Two brass rods and one steel rod together support a load of 250 kN denoted as P . Take E for steel as $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for brass $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. The cross-sectional area of steel rod is $1600 \mathrm{~mm}^{2}$ and of each brass rod is $1000 \mathrm{~mm}^{2}$.

1. Stress developed in steel rod
II. Stress developed in brass rod
III. Define compound bar and its rules of calculation

Question 5 continued over...

Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 5 continued...

Figure Q5a. A Compound bar
b) The following forces act at a point as shown in Figure Q5b:
(i) 20 N inclined at 30° towards North of East,
(ii) 25 N towards North,
(iii) 30 N towards North-West, and
(iv) 35 N inclined at 40° towards the South of West.

Find the magnitude and direction of the resultant force.

Question 5 continued over...

Please turn the page

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 5 continued...

South

Figure Q5b. Concurrent force system

Total 25 marks

Question 6

A simply supported beam carries concentrated lateral loads at C and D, and a uniformly distributed lateral load over the length CD as shown in Figure Q6.

Determine:

i. Reaction loads at the support
ii. Construct the shear force diagram for the beam

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Question 6 continued...

iii. Construct the bending moment diagram for the beam
iv. Find the position of maximum bending moment

Figure Q6. Simply supported beam
Total 25 marks

END OF QUESTIONS

Please turn the page for formulae

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

FORMULA SHEET

Determinants

$\frac{x}{D_{x}}=\frac{-\mathrm{y}}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$\mathrm{U}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{U}_{\mathrm{n}}=\mathrm{ar} \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$

Binomial

$$
\begin{aligned}
& \frac{n(n-1)}{2!} x^{2}+\ldots . \\
& (1+x)^{n}=1+n x+
\end{aligned}
$$

University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

Validity $|x|<1$ Partial Fractions
$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$

Stress

Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area
Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain

Normal

$$
\varepsilon=\frac{\delta \ell}{\ell}
$$

Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)

Compound Bars

$P=P_{1}+P_{2}$
$P=\int_{1} A_{1}+\int_{2} A_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,

Elastic Constants
$E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}$

Page 11 of 11
University of Bolton
Off Campus Division, Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2023/24
Engineering Principles I
Module No. AME4062

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E} \\
& \varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
& \varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \varepsilon_{v}=\frac{\delta V}{V}
\end{aligned}
$$

Compressibility

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

