ENG06

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG(HONS) ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER 1 EXAMINATION 2023/24

INTRODUCTORY ELECTRICAL PRINCIPLES

MODULE NO: EEE4012

Date:

Time:

INSTRUCTIONS TO CANDIDATES:

There are FIVE questions.

Answer ANY FOUR questions.

All questions carry equal marks.

Individual marks are shown within the question.

A formula sheet is given at the end of the paper.

Page 2 of 8

School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

Question 1

- a) Define the following terms (1.5 marks for each definition):
 - i. Frequency
 - ii. Period
 - iii. Phase angle
 - iv. Peak to peak value
 - v. RMS value
 - vi. Internal resistance
 - vii. Inductance
 - viii. capacitance

[12 marks]

- b) An AC ammeter reads 22 A rms current through a resistive load, and a voltmeter reads 385 V rms drop across the load.
- (i) What are the peak values and the average values of the alternating current and voltage? [6 marks]
- (ii) Calculate the load resistance.

[2 marks]

c) Find the Thevenin equivalent of the circuit given in Figure Q1 below. [5 marks]

Total Marks: 25 PLEASE TURN THE PAGE School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

Question 2

 a) A coil of copper wire has a resistance of 150 Ω, when its temperature is 0 °C. Determine its resistance at 60°C if the temperature coefficient of resistance (TCR) of copper at 0 °C is 0.0043/ °C.

[3 marks]

b) For the following circuit (Figure Q2b), using superposition theorem or otherwise, find out the current flowing through the 20 Ω resistor.

Total Marks: 25

Page 4 of 8

School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

Question 3

a) A 4.7 μ F capacitor has 12 V across it. What quantity of charge is stored in it? [3 marks]

b) Draw a diagram of a parallel plate capacitor, showing the charge on the plates and the E field in the region between the plates. [5 marks]

c) Explain what is meant by the dielectric strength E_m of an insulator? [4 marks]

d) For the capacitor **charging** circuit shown in figure Q3d below, where the capacitor is initially discharged, sketch two separate graphs for the current *I* versus time and the capacitor voltage V_c versus time. [8 marks]

Figure Q3d An initially uncharged capacitor being charged through a resistor.

e) Explain with the assistance of a diagram what happens to the structure of the curves for *I* versus time and V_c versus time if the time constant $\tau = RC$ for the circuit increases?

[5 marks]

Total Marks: 25

School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

Question 4

For the circuit shown in figure Q4, calculate:

- a) Currents I1, I2, and I3
- b) Voltages across R1, R2, and R3
- c) Powers P1, P2, and P3
- d) Draw the complete voltages and currents phasor diagram
- e) The peak I3 current at resonance frequency

Total Marks: 25

[9 marks]

[6 marks]

[3 marks]

[3 marks]

[4 marks]

Page 6 of 8 School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012 **Question 5**

 a) Explain why AC current through an inductor lags AC voltage across the inductor by 90 degrees, give the physical and mathematical interpretation for this phase difference.

[6 marks]

b) For a single-phase transformer of rated power of 250 V.A, what would be its secondary voltage and current if it has turns ratio $\binom{N_1}{N_2}$ of 10:1(step down) when it is connected to a supply mains of 250 V, 50 Hz. [5 marks]

- c) If the DC generator shown above in Fig.Q5c generates 8 volts (peak value) across the brushes, what would be the rms current that flows in the 1- Ω load? [3 marks]
- d) An AC motor is running at 1500 revolutions per minute when supplied from a 50
 Hz supply mains, what would be its number of magnetic poles? [4 marks]
- e) Design the clock signal frequency of a steps motor to rotate at 300 rpm +/- 10 rpm.
 Given that the stepper motor has the accuracy of 2.5 degree per step

[7 marks]

Total Marks: 25 END OF QUESTIONS PLEASE TURN PAGE FOR FORMULA SHEET

Page 7 of 8

School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:

Ohm's law: V = IR

Power: P = IV

Magnetic flux: $\Phi = BA$

Induced voltage: $V = \Delta \Phi / \Delta t$

 $f = \frac{pn}{120}$

Magnitude of the Reactance of Inductor L: $X_L = 2\pi f L$

Magnitude of the Reactance of Capacitor C: $X_C = \frac{1}{2\pi fC}$

Pythagorean theorem: $c^2 = a^2 + b^2$

Tangent function: tanA=opposite/adjacent

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Page 8 of 8

School of Engineering BEng (Hons) Electrical and Electronics Engineering Semester 1 Examination 2023/24 Introductory Electrical Principles Module No. EEE4012

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_c and R in Parallel	
I the same in X_c and R $V_T = \sqrt{V_R^2 + V_c^2}$	V_T the same across X_C and R $I_T = \sqrt{I_R^2 + I_C^2}$	
$Z = \sqrt{R^2 + X_c^2} = \frac{V_\tau}{I}$	$Z_{T} = \frac{V_{T}}{I_{T}}$	
$V_{\rm C}$ lags $V_{\rm R}$ by 90°	I_c leads I_R by 90°	
$\theta \approx \arctan\left(-\frac{X_c}{R}\right)$	$\theta = \arctan \frac{l_c}{l_R}$	

Summary Table for Series and Parallel RL Circuits

END OF PAPER