UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng(Hons) MECHANICAL ENGINEERING

SEMESTER 1 EXAMINATION 2023-24

ADVANCED THERMOFLUIDS AND CONTROL

MODULE NUMBER: AME6015

Date: Friday 12th January 2024

Time: 10:00 – 12:00

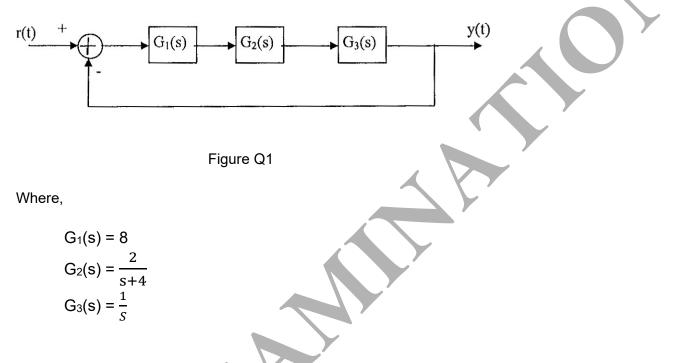
INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer any <u>FOUR</u> questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.


This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

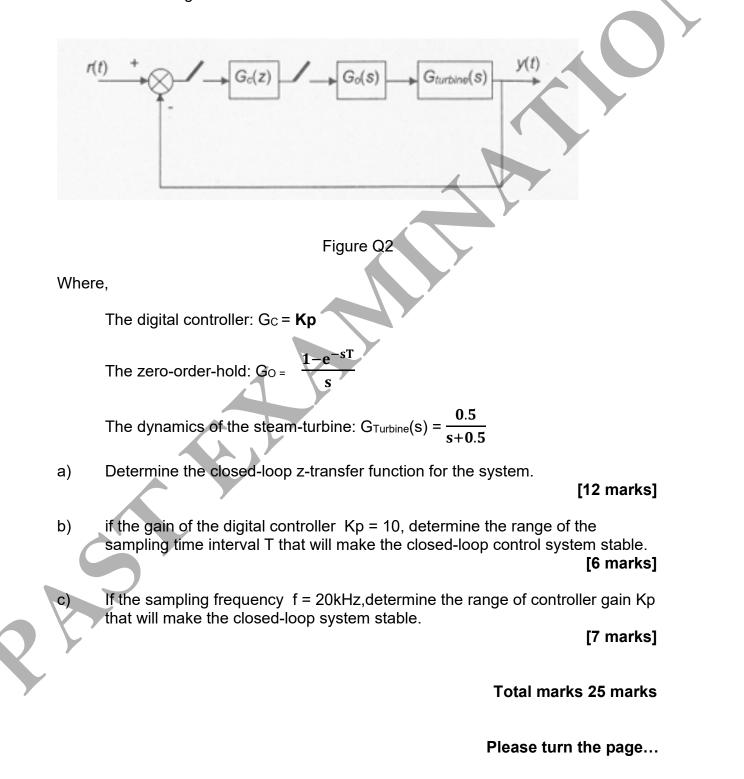
Question 1

A block diagram for a furnace temperature control system is shown in Figure Q1 below:

- a) Determine the system damping ratio, natural frequency, damped frequency, and steady state gain. [7 marks]
- b) Determine the time domain response of the system, y(t), to a unit impulse input, r(t). [6 marks]
- c) For a unit step input, determine the system rise time, peak time, maximum percentage overshoot, and settling time for a 2% tolerance.

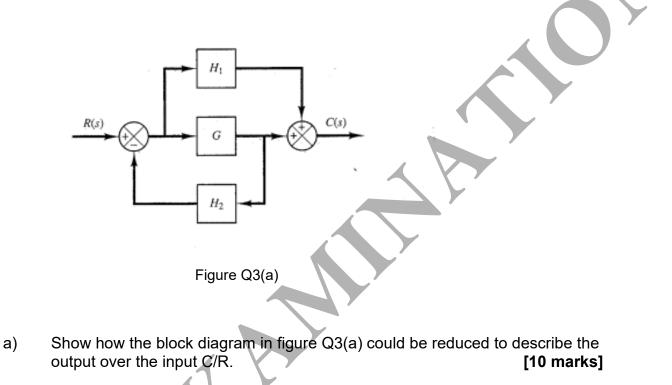
[6 marks]

d) If the input of $r(t) = 90, t \ge 0$ and $0, t \le 0$


is applied, analyse the system steady state error.

[6 marks]

Total marks 25 marks


Question 2

A block diagram for a digital control system for a steam-turbine speed control is shown below in Figure Q2.

Question 3

A dynamic system is shown in the block diagram below, Figure Q3(a),

- b) From the Matlab graph shown in Q3(b), shown over the page, estimate the gain and phase margins
 [6 marks]
- c) Sketch the magnitude and phase for the following functions.

i)
$$G1(s) = \frac{10}{0.2s+1}$$
 [3 marks]
ii) $G2(s) = \frac{2500}{2^2 + 2500}$ [3 marks]

i)
$$G2(s) = \frac{2500}{s^2 + 80s + 2500}$$
 [3 r

(iii)
$$G3(s) = \frac{8}{s}$$
 [2 marks]

Sketch the final result of G1(s)*G2(s)*G(s) and estimate the phase and gain margin. [7 marks]

QUESTION 3 CONTINUED OVER THE PAGE...

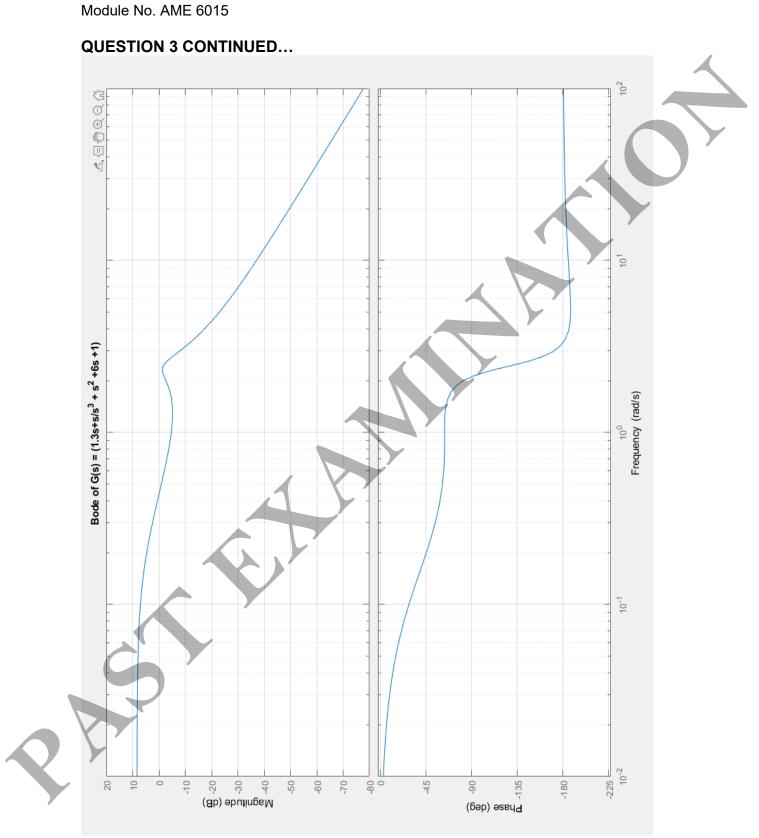


Figure 3(b)

Total marks 25 marks Please turn the page...

School of Engineering

BEng(Hons) Mechanical Engineering Semester 1 Examination 2023_24 Advanced Thermo-fluids and Control

Question 4

a) Describe the three key steps involved in a typical Computational Fluid Dynamics (CFD) simulation.

[4 Marks]

b) Determine the head loss resulting from a flow of 100 litres per second of glycerine at 20° C through a pipe with a length of 100 meters and a diameter of 20 centimetres. The Specific Gravity of Glycerine is 1.26 and Dynamic Viscosity = 0.886 Pa.s.

[6 Marks]

c) Derive the Darcy Weisbach Equation for the loss of Head due to friction in a Pipeline using the Bernoulli's Energy Equation.

[15 Marks]

Total Marks 25 Marks

Question 5

 a) Draw a Temperature – Enthalpy diagram for a process of steam formation and label the following: sensible heat region, latent heat region, saturated temperature, saturated liquid, saturated dry vapour and wet steam region.

[6 Marks]

- b) Calculate the Enthalpy of steam at the pressure of 10 bar. Take specific heat capacity c_p of superheated steam as 1.85kj/kgC.
 - i. When dryness fraction x=0.6
 - ii. When dry saturated
 - iii. When superheated at 200°C

[6 Marks]

- c) A quantity of steam of a pressure of 20 bar and dryness fraction of 0.8 occupies a volume of 0.1551m³. The gas expands according to polytropic process of pv^{3.5}=c to a pressure of 6 bar. Determine:
 - i. The mass of steam present and Enthalpy when pressure is 20 bar.
 - ii. The volume, dryness fraction and Enthalpy when pressure is 6 bar.

[13 Marks]

Total marks 25 Marks

Question 6

a) The Enthalpy of 2kg of steam at the pressure of 50 bar is 3850kj. Determine the condition and dryness fraction of the steam.

[4 Marks]

b) A reversible engine operates between the temperatures of 2800°C and 400°C. Draw a p-v diagram of Carnot cycle, illustrating all the processes, and determine and the efficiency of the engine.

[8 Marks]

c) A car engine burns 5kg of fuel (equivalent to addition of Q_H) at 1500K and rejects heat to the exhaust at an average temperature of 750K. If the fuel provides 40,000kj/kg of energy, what is the maximum amount of Work the engine can provide. Assume that the car engine operates according to Carnot cycle.

[13 Marks]

Total marks 25 Marks

END OF QUESTIONS

Formulae sheets follow over the page

Formula sheet

Blocks with feedback loop

$$G(s) = \frac{Go(s)}{1 + Go(s)H(s)}$$
 (for a negative feedback)

$$G(s) = \frac{Go(s)}{1 - Go(s)H(s)}$$
 (for a positive feedback)

Steady-State Errors

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{1 + G_o(s)} \theta_i(s)]$$
 (for the closed-loop system with a unity feedback)

$$e_{\mu} = \lim_{i \to 0} s \frac{1}{1 + \frac{G_0(s)}{1 + G_0(s)[H(s) - 1]}} \theta_i(s)] \text{ (if the feedback H(s) \neq i)}$$

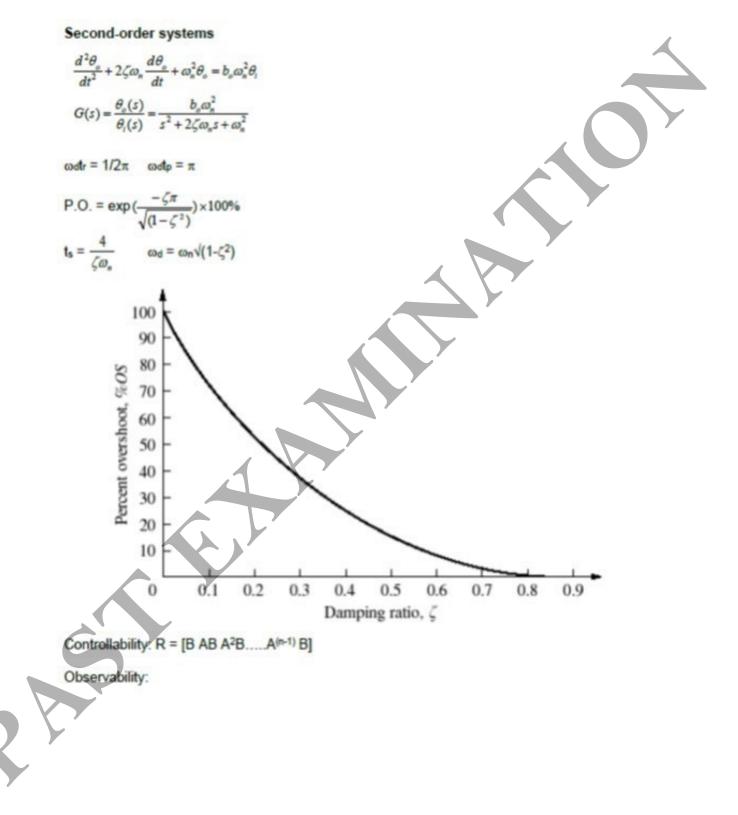
$$e_{zz} = \frac{1}{1 + \lim_{z \to 1} G_0(z)}$$
 (if a digital system subjects to a unit step input)

Laplace Transforms

A unit impulse function

A unit step function

A unit ramp function


First order Systems

$$G(s) = \frac{\theta_s}{\theta_i} = \frac{G_{\alpha}(s)}{8s+1}$$

$$\theta_0 = G_{in}(1 - e^{-t/\tau})$$
 (for a unit step input)

 $\theta_0 = AG_m(1 - e^{-t/r})$ (for a step input with size A)

 $\theta_o(t) = G_u(\frac{1}{\tau})e^{-(t/\tau)}$ (for an impulse input)

Laplace Domain	Time Domain	Z Domain
1	$\delta(t)$ unit impulse	1,
1	u(t) unit step	Ż
S		z-1
<u>1</u>	t	Tz
s ²	÷	$(z-1)^2$
$\frac{1}{s+a}$	e ^{-at}	$\frac{z}{z-e^{-aT}}$
$\frac{1}{s(s+a)}$	$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{z(1-e^{-aT})}{a(z-1)(z-e^{-aT})}$
$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$	$\frac{z(e^{-aT} - e^{-bT})}{a(z - e^{aT})(z - e^{-bT})}$
в	$e^{-at}\sin(bt)$	$ze^{-aT}\sin(bT)$
$(s+a)^2+b^2$		$\overline{z^2 - 2ze^{-aT}\cos(bT) + e^{-2}}$
s + a	$e^{-at}\cos(bt)$	$z^2 - z e^{-aT} \cos(bT)$
$(s+a)^2+b^2$	/	$\overline{z^2 - 2ze^{-aT}\cos(bT) + e^{-2}}$

Functions	ransforms of commo	
Unit pulse (Dirac delta distribution)	$\delta(t)$	F(s)=1
Unit step function	1(t)	$F(s) = \frac{1}{s}$
Ramp function	f(t) = at	$F(s) = \frac{1}{s^2}$
Sine function	$f(t) = \sin at$	$F(s) = \frac{a}{s^2 + a^2}$
Cosine function	$f(t) = \cos at$	$F(s) = \frac{s}{s^2 + a^2}$
Exponential function	$f(t) = e^{at}$	$F(s) = \frac{1}{s-a}$
Operations		Y
Differentiation	L(f'(t))	sF(s)-f(0)
Integration	$L\left(\int f(t)dt\right)$	$\frac{1}{s}F(s)$
Time shift	Lf(t-a)	$e^{-as}F(s)$

Thermofluids Formula Sheet

$$\lambda = \frac{64}{Re}$$

$$H_{f} = \frac{\lambda L v^{2}}{2 g d}$$

$$Re = \frac{\rho v d}{\mu}$$

$$Q = VA$$

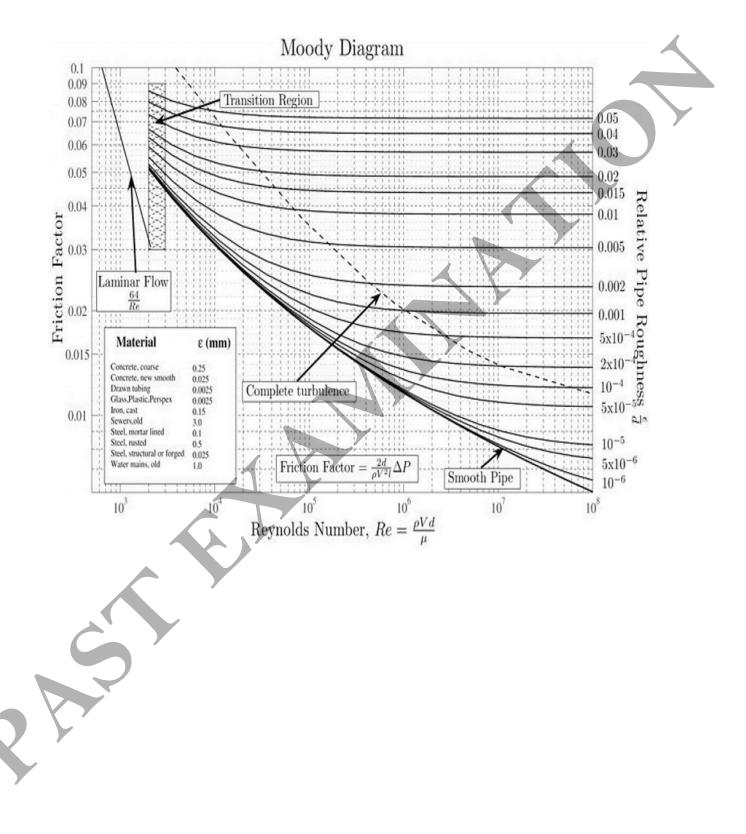
$$SPG = \frac{\rho f u u d}{\rho_{water}}$$

$$\rho_{1} + \frac{1}{2} \rho v_{1}^{2} + \rho g h_{1} = \rho_{2} + \frac{1}{2} \rho v_{2}^{2} + \rho g h_{2} + h_{f}$$

$$h = h_{f} + h_{fg}$$

$$h_{sup} = h_{g} + c_{p} (T_{sup} - T_{s})$$

$$pv^{n} = c$$


$$mass = \frac{volume}{speafic volume}$$

$$v = xv_{g}$$

$$Specific Enthalpy = \frac{Actual Enthalpy}{mass}$$

$$Efficiency = \frac{Output}{Input}$$

$$\eta_{e} = 1 - \frac{T_{e}}{T_{H}}$$

Quantity	Symbol	Dimensions		Quantity	Symbol	Dimensions												
Mass	m	м		Mass /Unit Area	m/A ²	ML -2												
Length	1	L		Mass moment	ml	ML												
Time	t	т			ĺ	ĺ	ĺ	ĺ	ĺ							Moment of Inertia	I	ML 2
Temperature	T	θ									-							
Velocity	u	LT -1		Pressure /Stress	p /σ	ML "T-2												
Acceleration	а	LT -2		Strain	Ť	M °L ®T °												
Momentum/Impulse	mv	MLT -1		Elastic Modulus	E	ML -1T -2												
Force	F	MLT -2		Flexural Rigidity	EL	ML ³ T ⁻²												
Energy - Work	w	ML ² T -2		Shear Modulus	G	ML -1T -2												
Power	Ρ	ML ² T ⁻³		Torsional rigidity	GJ	ML ³ T -2												
Moment of Force	М	ML 2T -2		Stimess	k	MT ~2												
Angular momentum	-	ML ² T ⁻¹		Angular stiffness	Τ/η	ML ² T - ²												
Angle	η	M °L °T °		Flexibility	1/k	M -1T 2												
Angular Velocity	ω	T -1		Vorticity		T -1												
Angular acceleration	α	T-2		Circulation		L ² T ⁻¹												
Area	A	12		Viscosity	μ	ML -1T -1												
Volume	v	L		Kinematic Viscosity	τ	L ² T ⁻¹												
First Moment of Area	Ar	L'à		Diffusivity	-	L ² T ⁻¹												
Second Moment of Area	I	L ⁴		Friction coefficient	f/µ	M °L °T °												
Density	P	ML ⁻³		Restitution coefficient		M °L °T °												
Specific heat- Constant Pressure	C,	L ² T ⁻² θ ⁻¹		Specific heat- Constant volume	c.	L ² T ⁻² θ ⁻¹												

DIMENSIONS FOR CERTAIN PHYSICAL QUANTITIES

Note a is identified as the local sonic velocity, with dimensions L .T $^{\rm -1}$

END OF PAPER