ENG27

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG(HONS) MECHANICAL ENGINEERING

SEMESTER 2 EXAM 2022-23

THERMOFLUIDS AND CONTROL SYSTEMS MODULE NUMBER: AME5013

Date: Wednesday 10th May 2023

Time: 2:00pm – 4:00pm

INSTRUCTIONS TO CANDIDATES:

There are SIX questions.

Answer ANY FOUR questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Q1) a) What depth of oil which has a specific gravity of 0.8 will produce a pressure of 120 kPa? What would be the corresponding depth of water for the same amount of pressure?

[5 Marks]

b) A jet of water 10mm in diameter has a velocity of 18m/s. It strikes a plate moving in the same direction as the jet with a velocity of 3m/s. Determine the force exerted by the jet on the plate. What will be the force on the plate if the velocity of the plate is increased to 10m/s

[10 Marks]

c) In Figure Q1c fluid P is water and fluid Q is mercury. If the specific gravity of mercury is 13.6 times that of water and the atmospheric pressure is 101325 Pa, what is the absolute pressure at point A when $h_1 = 15$ cm and $h_2 = 30$ cm

[10 Marks]

Figure Q1c: U-tube manometer opened to atmosphere

Q2) a) Water (density = 1000 kg/m³) flowing in a circular horizontal pipe has a diameter of 150mm and a velocity of 3 m/s. At the downstream section of the pipe, its diameter is reduced to 75mm as is shown in Figure Q2a. Determine the velocity at point 2 and the discharge rate in the pipe.

b) A venturi meter with a throat diameter of 180mm is fitted into a horizontal pipeline of 360mm through which water flows. The pressure difference between the entry and throat is measured by a U-tube manometer. If the difference in level indicated by the manometer is 40cm, calculate the velocity at point 1 and at the throat of the venturi meter shown as point 2 in Figure Q2b.

Figure Q2b: Venturi meter showing pressure difference between inlet and throat c) Calculate the pressure at the throat of the venturi meter (point 2) if the pressure at point 1 is 50kPa.

[5 Marks]

Q3) a) Define the following: Isobaric process, Isothermal process, Adiabatic process, Isochoric process and Bottom Dead Centre.

[5 Marks]

b) A gas at initial state of 300K, 800kPa, and 0.3m³ is expanded slowly in an isothermal process to a final pressure of 250kPa. Draw a p-v diagram for the process

[5 Marks]

c) A gas in a piston-cylinder assembly undergoes a polytropic process for which the relationship between pressure and volume is given by $pv^n = C$. The initial pressure is 3 bar, the initial volume is $0.1m^3$ and final volume is $0.2m^3$. Calculate the work done for the process if n=1.5

[15 Marks]

Q4)

A block diagram for a furnace temperature control system is shown in Figure Q4 below:

- a) Determine the system damping ratio, natural frequency, damped frequency, and steady state gain. [7 marks]
- b) Determine the time domain response of the system, y(t), to a unit impulse input, r(t).

[6 marks]

c) For a unit step input, determine the system rise time, peak time, maximum percentage overshoot, and settling time for a 2% tolerance.

[6 marks]

d) If the input of $r(t) = 90, t \ge 0$ and $0, t \le 0$

is applied, analyse the system steady state error.

[6 marks]

Q5)

A block diagram for a control system for a steam-turbine speed control is shown below in Figure 5.

Q6)

a) A spring damper system has a transfer function of $G(s) = \frac{30}{10s+1}$. [5 marks]

If a unit step has been applied to the input, sketch a diagram to display the relationship between the input force and the output displacement. [5 marks]

b) Find the time constant and the steady state gain.

c) The relationship between the input signal to a radio telescope dish and the direction in which it points is a second-order system. Figure 6 shows the output of the system which subjects to a step input.

Determine:

- the system's natural angular frequency (the undamped angular (i) frequency) ω_n,
- the damped angular frequency ω_d , (ii)
- (iii) damping factor ζ ,
- the 100% rise time t_r, (iv)
- (v) the percentage maximum overshoot,
- the 2% settling time ts, (vi)
- and the peak time t_{P} of the output. (vii)

[15 marks]

Figure 6

PLEASE TURN THE PAGE FOR FORMULA SHEETS AND PROPERTY TABLES...

Formula sheet

Blocks with feedback loop

$$G(s) = \frac{Go(s)}{1 + Go(s)H(s)}$$
 (for a negative feedback)

$$G(s) = \frac{Go(s)}{1 - Go(s)H(s)}$$
 (for a positive feedback)

Steady-State Errors

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{1 + G_o(s)} \theta_i(s)]$$
 (for the closed-loop system with a unity feedback)

$$e_{\mu} = \lim_{z \to 0} [s \frac{1}{1 + \frac{G_0(s)}{1 + G_0(s)[H(s) - 1]}} \theta_i(s)] \text{ (if the feedback H(s) } \neq 0$$

$$e_{zz} = \frac{1}{1 + \lim_{z \to 1} G_0(z)}$$
 (if a digital system subjects to a unit step input)

Laplace Transforms

A unit impulse function

A unit step function

A unit ramp function

First order Systems

$$G(s) = \frac{\theta_s}{\theta_1} = \frac{G_u(s)}{\tau s + 1}$$

$$\tau \left[\frac{d\theta_o}{dt} \right] + \theta_o = G_{ss} \theta_i$$

 $\theta_0 = G_{\mu}(1 - e^{-t/\tau})$ (for a unit step input)

 $\theta_0 = AG_m(1 - e^{-t/\tau})$ (for a step input with size A)

 $f(t) = G_{\mu}(\frac{1}{r})e^{-(t/r)}$ (for an impulse input)

anlace Domain	Time Domain	7 Domain
	Time Domain	2 Donnain
1	$\delta(t)$ unit impulse	1
1	u(t) unit step	
S		z -1
· <u>1</u>	t	Tz
S ²	÷	$(z-1)^2$
	e^{-at}	Z
s + a		$z = e^{-aT}$
1	$\frac{1}{-1}(1-e^{-at})$	$z(1-e^{-aT})$
s(s+a)	a	$a(z-1)(z-e^{-aT})$
b-a	$e^{-at} - e^{-bt}$	$z(e^{-aT}-e^{-bT})$
$\overline{(s+a)(s+b)}$		$\overline{a(z-e^{aT})(z-e^{-bT})}$
Ь	$e^{-at}\sin(bt)$	$ze^{-aT}\sin(bT)$
$\overline{(s+a)^2+b^2}$		$\overline{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
s + a	$e^{-at}\cos(bt)$	$z^2 - ze^{-aT}\cos(bT)$
$(s+a)^2+b^2$		$\overline{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$

Laplace transform and Z transform table

Laplace Tr	ransforms of commo	n functions	$\boldsymbol{\boldsymbol{\lambda}}$
Functions			
Unit pulse (Dirac delta	$\delta(t)$	F(s) = 1	
distribution)			
Unit step function	1(t)	$F(s) = \frac{1}{s}$	
Ramp function	f(t) = at	$F(s) = \frac{1}{s^2}$	
Sine function	$f(t) = \sin at$	$F(s) = \frac{a}{s^2 + a^2}$	
Cosine function	$f(t) = \cos at$	$F(s) = \frac{s}{s^2 + a^2}$	
Exponential function	$f(t) = e^{at}$	$F(s) = \frac{1}{s-a}$	
Operations		Y	
Differentiation	L(f'(t))	sF(s) - f(0)	
Integration	$L\left(\int f(t)dt\right)$	$\frac{1}{s}F(s)$	
Time shift	Lf(t-a)	$e^{-as}F(s)$	

$$W = \frac{P_{1}V_{1} - P_{2}V_{2}}{n - 1} \qquad W = P(v_{2} - v_{1})$$

$$W = PV \ln\left(\frac{V_{2}}{V_{1}}\right)$$

$$Q = C_{4}A \sqrt{2}gh$$

$$V_{1} = C \sqrt{2g h_{2}\left(\frac{\rho g_{m}}{\rho g} - 1\right)}$$

$$\sum F = \frac{\Delta M}{\Delta t} = \Delta M$$

$$F = \rho QV$$

$$Re = V \perp \rho/\mu$$

$$dQ = du + dw$$

$$du = cu dT$$

$$dw = pdv$$

$$pv = mRT$$

$$h = hr + xhfg$$

$$s = sr + xsfg$$

$$v = x Vg$$

$$Q - w = \sum mh$$

$$F = \frac{2\pi L \mu}{L\left(\frac{B_{1}^{2}}{R_{1}}\right)}$$

$$S_{n} = C_{n} \ L_{n} \frac{T}{273} + \frac{h_{n}}{h_{r}}$$

$$S = C_{n} \ L_{n} \frac{T}{273} + \frac{h_{n}}{h_{r}} + C_{n} \ L_{n} \frac{T}{T_{r}}$$

$$S_{n} = S_{n} = MC_{p} \ L_{n} \frac{T_{n}}{T_{r}} - MRL_{n} \frac{P_{n}}{P_{n}}$$

$$F_{n} = \frac{1}{2} CD \ n^{3/2}$$

$$F_{n} = \frac{1}{2} C_{n} n^{3/2}$$

$$F_{n} = \frac{1}{2} C_{n} n^{3/2}$$

$$S_{n} = \frac{d}{dr} (P + pgZ)$$

$$Q = \frac{dD^{3}Ap}{d2g}$$

$$h_{r} = \frac{4f_{n}}{R}$$

$$h_{r} = \frac{4f_{n}}{T_{n}}$$

$$h_{r} = \frac{4f_{n}}{T_{2}g}$$

$$f = \frac{16}{Re}$$

$$h_{n} = \frac{KV^{2}}{2g}$$

$$F = (1 - \frac{T}{T_{n}})$$

$$S_{nn} = (S_{1} - S_{1})) + \frac{Q}{T}$$

$$H^{n} = U_{1} \ qU_{2} - T_{2}S_{n}$$

$$H^{n} = U_{1} \ qU_{2} - T_{2}S_{n}$$

$$H^{n} = U_{1} \ qU_{2} - T_{2}S_{n}$$

$$H^{n} = H(V_{1} - T_{1})^{2}$$

$$F = H(V_{1} - T_{2})^{2}$$

$$F = H(V_{2} - T_{2}$$

```
\Phi = (U - U_0) - T(S - S_0) + Po(V - V_o)
I = ToS_{gen}
V = r\omega
\lambda = \mu \frac{V}{t}
F = \frac{2\pi L \mu u}{2\pi L \mu u}
             R<sub>2</sub>
T = \frac{\pi^2 \mu N}{60t} \left( R_1^4 - R_2^4 \right)
p = \frac{\rho g Q H}{1000}
                                                                                              PLEASE TURN THE PAGE
```


Quantity	Symbol	Dimensions		Quantity	Symbol	Dimensions							
Mass	m	м		Mass /Unit Area	m/A ²	ML -2							
Length	1	L]	Mass moment	mi	ML							
Time	t	т					Τ θ LT -1 LT -2	Τ θ LT -1	(1	Moment of Inertia	I	ML 2
Temperature	Т	θ											
Velocity	u	LT -1								Pressure /Stress	p /σ	ML "T-2	
Acceleration	а	LT-2						Strain	t	M °L ®T °			
Momentum/Impulse	mv	MLT -1				Elastic Modulus	E	ML -1T -2					
Force	F	MLT -2		Flexural Rigidity	El	ML ³ T ⁻²							
Energy - Work	w	ML ² T ⁻²		Shear Modulus	G	ML -1T -2							
Power	Ρ	ML ² T ⁻³		Torsional rigidity	GJ	ML ³ T -2							
Moment of Force	М	ML 2T -2		Stimess	k	MT -2							
Angular momentum	-	ML ² T ⁻¹		Angular stiffness	Τ/η	ML 2T -2							
Angle	η	M °L °T °		Flexibility	1/k	M -1T 2							
Angular Velocity	ω	T -1		Vorticity	-	T -1							
Angular acceleration	α	T-2		Circulation		L ² T ⁻¹							
Area	A	12		Viscosity	μ	ML -1T -1							
Volume	v	L		Kinematic Viscosity	τ	L ² T ⁻¹							
First Moment of Area	Ar	13		Diffusivity	-	L ² T ⁻¹							
Second Moment of Area	I	L ⁴		Friction coefficient	f/μ	M °L °T °							
Density	P	ML ⁻³		Restitution coefficient		M °L °T °							
Specific heat- Constant Pressure	Cp	L ² T ⁻² θ ⁻¹		Specific heat- Constant volume	c.	L ² T ⁻² θ ⁻¹							

DIMENSIONS FOR CERTAIN PHYSICAL QUANTITIES

Note a is identified as the local sonic velocity, with dimensions L .T -1

222

END OF PAPER