SCHOOL OF ENGINEERING

BSC(Hons) MECHATRONICS

SEMESTER 1 EXAM 2022-23

ELECTRONIC ENGINEERING FOR MECHATRONICS

MODULE NO: MEC6005

Date: Wednesday $11^{\text {th }}$ January 2023
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:

There are SIX questions.
Answer any FOUR questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 1

a) The alternating voltages shown in Fig1(a) is connected across a $10 \mathrm{k} \Omega$ resistor, Calculate;
(i) The RMS current,
(ii) The Frequency
(iii) The mean power dissipated in the resistor

Fig 1(a)
b) Derive the instantaneous equation that predicts the waveform in Fig1(a) and calculate the value when $t=1.25 \mathrm{~ms}$.
c) Find the Thevenin equivalent of the circuit given in Fig 1(b).

Fig. 1b

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 2:

a) For the circuit shown below (Figure Q2.a), considering the R2 as the load resistance

Figure Q2á
(i) Calculate all the currents and voltages using mesh current analysis.
[10 marks]
(ii) Calculate the power in the resistors.
b) For the following circuit (Figure Q2b), using superposition theorem or otherwise, find out the current flowing through the 10Ω resistor.

Figure Q2b

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 3

a) $\quad \mathrm{A} 10 \mu \mathrm{~F}$ capacitor has 15 V across it. What quantity of charge is stored in it?
b) Draw a diagram of a parallel plate capacitor showing the charge on the plates and the \mathbf{E} field in the region between the plates.
c) Explain what is meant by the dielectric strength E_{m} of an insulator? [5 marks]
d) For the capacitor charging circuit shown in Figure Q3d below, where the capacitor is initially discharged, sketch two separate graphs for the current I versus time and the capacitor voltage V_{c} versus time.
[5 marks]

Figure Q3d An initially uncharged capacitor being charged through a resistor.
e) Calculate the time for the capacitor to reach 63% of it's final voltage if the resistor has a value of $10 \mathrm{k} \Omega$ and the capacitor is $15 \mu \mathrm{~F}$.
[5 marks]

Total Marks: 25

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 4

For the circuit shown in figure Q4, calculate:
a) The impedance of the two parallel networks and total circuit impedance.
b) Currents IA, IB, and IT.
[5 marks]
c) The circuit phase angle between V1 and IT.
d) Voltages across the series and parallel impedances V1 and V2. [10 marks]

Where V1 $=91 \angle \mathbf{0}^{0} \boldsymbol{V} \quad \mathrm{~L} 1=\mathrm{j} 1.02 \Omega . \mathrm{L} 2=\mathrm{j} 7 \Omega, \mathrm{C} 1=-\mathrm{J} 15 \Omega$

Figure Q4
Total Marks: 25

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 5

a) For the combinational digital circuit shown below in Figure. Q5a:

Figure Q5a Digital Circuit
i) Derive the Boolean equation for the output F.
ii) Simplify the circuit using Boolean algebra.
iii) Replace the simplified circuit with a new circuit.
b) Fill in the blanks by converting the following numbers into their respective missing decimal and binary equivalents:
i) $11001_{2}=$ \qquad 10
ii) $1000101_{2}=$

iii) $B 2_{16}=$ \qquad 10
iv) \qquad $16=1306_{10}$
v) \qquad $16=2610$

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Question 6

(a) For the summing amplifier shown in Fig 6a, calculate Vo.

Fig 6a
(b) For the first order filter shown in Fig 6b, derive the transfer function.

[10 marks]

Fig 6b
(c) Calculate the corner frequency.
[5 marks]
Total Marks: 25

END OF QUESTIONS

Formula Sheet continues over the page
Please turn the page....

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:
Ohm's law: $V=I R$
Power: $P=I V$
Magnetic flux: $\Phi=B A$
Induced voltage: $V=\Delta \Phi / \Delta t$
Force experienced by charged particle $=q v B \sin \theta$
Motional emf: $E=B l v$

$$
f=p n / 120
$$

Magnitude of the Reactance of Inductor $L: \quad X_{L}=2 \pi f L_{L}$
Magnitude of the Reactance of Capacitor C $X_{C}=\frac{1}{2 \pi f C}$
Pythagorean theorem: $c^{2}=a^{2}+b^{2}$
Tangent function: $\tan \mathrm{A}=\mathrm{opposite} /$ adjacent

$$
\begin{aligned}
& \mu_{-} o=\left(4 \pi X 10^{\wedge}(-7) H\right) / m, \epsilon_{-} \sigma=\left(8.85 X 10^{\wedge}(-12) F\right) / m \\
& H=(N . I) / l, B=u H
\end{aligned}
$$

$M M F=N . I$
$L=\left(\mu_{-} \sigma \mu_{-} r A N^{\wedge} 2\right) / l, \quad E=1 / 2 L I^{\wedge} 2$
$\mathrm{C}=\mathrm{Q} / \mathrm{V}, \mathrm{C}=\epsilon A / d, \quad \mathrm{E}=1 / 2 C V^{\wedge} 2$
$v L L=L .\left(d i_{-} L\right) / d t$
$i_{-} C=C\left(d v_{-} C\right) / d t$
$f=p n / 120$

Transformer voltage ratio: $\angle, \mathrm{P}=\mathrm{V}_{1} \cdot \mathrm{I}_{1}=\mathrm{V}_{2} \cdot \mathrm{I}_{2}$

School of Engineering
BSc(Hons) Mechatronics
Semester 1 Exam 2022-23
Electronic Engineering for Mechatronics
Module No. MEC6005

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Summary Table for Series and Parallel RL Círcuits

X_{L} and R in Series	X_{L} and R in Parallel
I the same in X_{L} and R	V_{T} the same across X_{L} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{L}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{\mathrm{L}}^{2}}$
$Z=\sqrt{R^{2}+X_{\mathrm{L}}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{R} lags V_{L} by 90°	I_{L} lags I_{R} by 90°
$\theta=\arctan \frac{X_{L}}{R}$	$\theta=\arctan \left(-\frac{I_{\mathrm{L}}}{I_{R}}\right)$

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_{C} and R in Parallel
I the same in X_{C} and R	V_{T} the same across X_{C} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{C}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{C}^{2}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{C} lags V_{R} by 90°	I_{C} leads I_{R} by 90°
$\theta=\arctan \left(-\frac{X_{C}}{R}\right)$	$\theta=\arctan \frac{I_{C}}{I_{R}}$

END OF PAPER

