## UNIVERSITY OF BOLTON

## OFF CAMPUS DIVISION

## WESTERN INTERNATIONAL COLLEGE

## BENG(HONS) ELECTRICAL AND ELECTRONIC

 ENGINEERING
## SEMESTER ONE EXAMINATIONS 2022/2023

## ENGINEERING ELECTROMAGNETISM

## MODULE NO: EEE6012

Date: Tuesday, 10 January 2023 Time: 10:00-12:30

INSTRUCTIONS TO CANDIDATES:
There are SIX questions on this paper.

Answer ANY FOUR questions.
Silent calculators may be used.
This is a closed book assessment.
All questions carry equal marks.

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Q1.
A. A. Given point $P(-2,6,3)$ and vector $A=y a x+(x+z) a_{y}$, express $P$ and $A$ in cylindrical and spherical coordinates. Evaluate A at Pin the Cartesian coordinate system.
B. Two uniform vector fields are given by $E=-5 a_{\rho}+10 a \varnothing+3 a_{z}$ and $F=a_{\rho}+2 a \varnothing$ - 6az. Calculate |E x F|
C. Consider the object shown in Figure 1. Calculate
(i) The length BC
(ii) The surface area ABO
(iii) The length CD
(iv) The surface area ABCD
(v) The volume ABDCFO.


Figure 1

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Q2.
A. Find the gradient of the scalar field: $V=e^{-z} \sin 2 x \cosh y$
B. Determine the divergence and curl of the vector field: $P=x^{2} y z a x+x z a z$
C. The finite sheet $0<x<1,0<y<1$ on the $z=0$ plane has a charge density Ps $=x y\left(x^{2}+y^{2}+25\right)^{3 / 2} n C / m^{2}$. Find
(i) The total charge on the sheet
(ii) The electric field at $(0,0,5)$

Total 25 marks

Q3.
A. Given that $D=z \rho \cos ^{2} a_{z} C / m^{2}$, calculate the charge density at $(1, \Pi / 4,3)$ and the total charge enclosed by the cylinder of radius 1 m with $-2<z<2 \mathrm{~m}$.
[7 marks]
B. Given the potential $V=\frac{10}{r^{2}} \sin \theta \cos \emptyset$, find the electric flux density D at $(2$, П/2, 0).
[2 marks]
C. If $J=\frac{1}{r^{3}}\left(2 \cos \theta a_{r}+\sin \theta a_{\emptyset}\right) \mathrm{A} / \mathrm{m}^{2}$ calculate the current passing through a hemispherical shell of radius $20 \mathrm{~cm}, 0<\theta<\Pi / 2,0<\varnothing<2 \Pi$.

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

## Q3 continued...

D. Current-carrying components in high-voltage power equipment can be cooled to carry away the heat caused by ohmic losses. A means of pumping is based on the force transmitted to the cooling fluid by charges in an electric field. Electro hydrodynamic (EHD) pumping is modelled in Figure 2. The region between the electrodes contains a uniform charge $\rho_{0}$, which is generated at the left electrode and collected at the right electrode. Calculate the pressure of the pump if $\rho_{0}=25 \mathrm{mC} / \mathrm{m}^{3}$ and $\mathrm{V}_{0}=22 \mathrm{kV}$.


Figure 2
Total 25 marks

PLEASE TURN THE PAGE

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Q4.
A. Given the magnetic vector potential

$$
A=-\frac{\rho^{2}}{4} W b / m
$$

Calculate the total magnetic flux crossing the surface

$$
\emptyset=\frac{\Pi}{2}, 1 \leq \rho \leq 2 m, 0 \leq z \leq 5 m
$$

B. An electric field in free space is given by $E=50 \cos \left(10^{8} T+{ }^{\beta} x\right) a_{y} \mathrm{~V} / \mathrm{m}$
(i) Find the direction of wave propagation.
(ii) Calculate $\beta$ and the time it takes to travel a distance of $\lambda / 2$.
(iii) Sketch the wave at $\mathrm{t}=0$
[2 marks]
C. An EM wave travels in free space with the electric field component

$$
E=100 e^{j(0.866 y+0.5 z)} a_{y} V / m
$$

Determine
(i) $\omega$ and $\lambda$
(ii) The magnetic field component
[3 marks]
(iii) The time average power in the wave

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

## Q5.

A. A transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8 \mathrm{~dB} / \mathrm{m}, \beta=1$ $\mathrm{rad} / \mathrm{m}$, and $Z_{0}=60+\mathrm{j} 40 \Omega$. If the line is connected to a source of $10<0^{\circ} \mathrm{V}$,
$Z_{g}=40 \Omega$ and terminated by a load of $20+\mathrm{j} 50 \Omega$, determine
(i) The input impedance
(ii) The sending-end current
(iii) The current at the middle of the line.
[12 marks]
B. A lossless transmission line with $Z_{0}=50 \Omega$ is 30 m long and operates at 2 MHz . The line is terminated with a load $Z_{i}=60+j 40 \Omega$. If $\mathrm{u}=0.6 \mathrm{c}$ on the line, find
(i) The reflection coefficient $r$
(ii) The standing wave ratio s

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Q6.
An antenna with a circular aperture of diameter 3meters is desired to operate at 5 GHz . The radiation resistance of it is given as $72 \Omega$ and a loss resistance as $8 \Omega$.
A. Determine the power being radiated by the antenna which is drawing a current of 8 Ampere
B. Calculate
(i) the capture area
[5 marks]
(ii) directivity gain in dB
[5 marks]
(iii) Q factor of the antenna
[4 marks]
C. An S-band radar transmitting at 3 GHz radiates 200 kW . Determine the signal power density at ranges 100 and 400 nautical miles if the effective area of the radar antenna is $9 \mathrm{~m}^{2}$. With a $20 \mathrm{~m}^{2}$ target at 300 nautical miles, calculate the power of the reflected signal at the radar.

## END OF QUESTIONS

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

## EQUATION SHEET

CIRCULAR CYLINDRICAL COORDINATES $(\rho, \phi, z)$

$$
\rho=\sqrt{x^{2}+y^{2}}, \quad \phi=\tan ^{-1} \frac{y}{x}, \quad z=z
$$

$$
\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]
$$

SPHERICAL COORDINATES $(r, \theta, \phi)$


$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]
$$

## DIFFERENTIAL LENGTH, AREA, AND VOLUME

A. Cartesian Coordinate Systems

1. Differential displacement is given by

$$
d \mathbf{l}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
2. Differential normal surface area is given by

$$
\begin{array}{r}
d \mathbf{S}= \\
d y d z \mathbf{a}_{x} \\
d x d z \mathbf{a}_{y} \\
d x d y \mathbf{a}_{z}
\end{array}
$$

3. Differential volume is given by

$$
d v=d x d y d z
$$

B. Cylindrical Coordinate Systems

1. Differential displacement is given by

$$
d \mathbf{l}=d \rho \mathbf{a}_{\rho}+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z}
$$

2. Differential normal surface area is given by

$$
\begin{aligned}
d \mathbf{S}= & \rho d \phi d z \mathbf{a}_{\rho} \\
& d \rho d z \mathbf{a}_{\phi} \\
& \rho d \rho d \phi \mathbf{a}_{z}
\end{aligned}
$$

and illustrated in Figure 3.4
3. Differential volume is given by

$$
d v=\rho d \rho d \phi d z
$$

C. Spherical Coordinate Systems

University of Bolton
Off Campus Division, Western International College BEng (Hons) Electrical \& Electronic Engineering Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
2. The differential normal surface area is

$$
\begin{aligned}
d \mathbf{S}= & r^{2} \sin \theta d \theta d \phi \mathbf{a}_{t} \\
& r \sin \theta d r d \phi \mathbf{a}_{\theta} \\
& r d r d \theta \mathbf{a}_{\phi}
\end{aligned}
$$

3. The differential volume is

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

## DEL OPERATOR

$$
\nabla=\frac{\partial}{\partial x} \mathbf{a}_{x}+\frac{\partial}{\partial y} \mathbf{a}_{y}+\frac{\partial}{\partial z} \mathbf{a}_{z}
$$

$$
\nabla=\mathbf{a}_{\rho} \frac{\partial}{\partial \rho}+\mathbf{a}_{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi}+\mathbf{a}_{z} \frac{\partial}{\partial z}
$$

$$
\nabla=\mathbf{a}_{r} \frac{\partial}{\partial r}+\mathbf{a}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\mathbf{a}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

GRADIENT OF A SCALAR

$$
\nabla V=\frac{\partial V}{\partial x} \mathbf{a}_{x}+\frac{\partial V}{\partial y} \mathbf{a}_{y}+\frac{\partial V}{\partial z} \mathbf{a}_{z}
$$

$$
\nabla V=\frac{\partial V}{\partial \rho} \mathbf{a}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}+\frac{\partial V}{\partial z} \mathbf{a}_{z}
$$

$$
\nabla V=\frac{\partial V}{\partial r} \mathbf{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi}
$$

## DIVERGENCE OF A VECTOR

$$
\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

$$
\nabla \cdot \mathbf{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

$$
\nabla \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial \mathbf{A}_{\phi}}{\partial \phi}
$$

CURL OF A VECTOR

$$
\begin{aligned}
\nabla \times \mathbf{A} & =\left|\begin{array}{lll}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
\nabla \times \mathbf{A} & =\frac{1}{\rho}\left|\begin{array}{lll}
\mathbf{a}_{\rho} & \rho_{\mathbf{a}_{\phi}} & \mathbf{a}_{z} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
A_{\rho} & \rho^{A_{\phi}} & A_{z}
\end{array}\right| \\
\nabla \times \mathbf{A} & =\frac{1}{r^{2} \sin \theta}\left|\begin{array}{lll}
\mathbf{a}_{r} & r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{r} & r A_{\theta} & r \sin \theta A_{\phi}
\end{array}\right|
\end{aligned}
$$

$$
\oint_{S} \mathbf{A} \cdot d \mathbf{S}=\int_{v} \nabla \cdot \mathbf{A} d v=0
$$

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}}
$$

$$
\mathbf{E}=\frac{\mathbf{F}}{Q}
$$

$$
\mathbf{E}=\frac{\varrho}{4 \pi \varepsilon_{0} r^{2}} \mathbf{a}_{r}
$$

$$
\mathbf{E}=\int_{S} \frac{\rho_{S} d S \mathbf{a}_{R}}{4 \pi \varepsilon_{\mathrm{o}} r^{2}}=\int_{S} \frac{\rho_{S} d S\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{4 \pi \varepsilon_{\mathrm{o}}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

$$
\begin{array}{ll}
Q=\int_{L} \rho_{L} d l & \text { for line charge } \\
Q=\int_{S} \rho_{S} d S & \text { for surface charge } \\
Q=\int_{v} \rho_{v} d v & \text { for volume charge } \\
\mathbf{D}=\varepsilon_{0} \mathbf{E} &
\end{array}
$$

## ELECTRIC FLUX DENSITY

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}
$$

$$
Q=\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v
$$

$$
\rho_{v}=\nabla \cdot \mathbf{D}
$$

$$
\mathbf{E}=-\nabla V
$$

electric flux through a surface $S$ is

$$
\Psi=\int_{S} \mathbf{D} \cdot d \mathbf{S}
$$

$$
I=\oint \mathbf{J} \cdot d \mathbf{S}=\int \nabla \cdot \mathbf{J} d v
$$

$$
J=\sigma \mathrm{E}
$$

## $\rho_{0}=n e$

$I=\sigma E$
$\mathbf{D}=\varepsilon_{0}\left(1+\chi_{e}\right) \mathbf{E}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}$
$\mathrm{D}=\varepsilon \mathrm{E}$

$$
\varepsilon=\varepsilon_{0} \varepsilon_{r}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

$$
\nabla^{2} V=-\frac{\rho_{v}}{\varepsilon}
$$

$$
\begin{gathered}
\mathrm{F}=\int_{v} \rho_{v} \mathrm{E} d v \\
\oint_{L} \mathbf{H} \cdot d \mathbf{l}=I_{\text {enc }}
\end{gathered}
$$

$$
\nabla \times \mathrm{H}=\mathrm{J}
$$

$$
\mathbf{B}=\mu_{\mathrm{o}} \mathbf{H}
$$

$$
\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{S}=0
$$

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{S}=\int_{v} \nabla \cdot \mathbf{B} d v=0
$$

$\nabla \cdot \mathbf{D}=\rho_{v}$
$\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v$
$\nabla \cdot \mathbf{B}=0$

$$
\nabla \times \mathbf{H}=\boldsymbol{V}
$$

$$
\begin{aligned}
& \oint_{S} \mathbf{B} \cdot d \mathbf{S}=0 \\
& \oint_{L} \mathbf{E} \cdot d \mathbf{l}=0 \\
& \oint_{L} \mathbf{H} \cdot d \mathbf{l}=\int_{S} \mathbf{J} \cdot d \mathbf{S}
\end{aligned}
$$

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\nabla \cdot \mathbf{A}=0
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

$$
\mathbf{F}=\oint_{L} I d \mathbf{l} \times \mathbf{B}
$$

$$
V_{\mathrm{emf}}=\oint_{L} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

$F_{m}=I \ell B$

$$
\beta=\omega \sqrt{\mu \varepsilon}=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}=\frac{\omega}{c} \sqrt{\varepsilon_{r}}
$$

$$
\mathscr{P}=\mathbf{E} \times \mathbf{H}
$$

$$
\Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

$$
k=\beta=\omega \sqrt{\mu_{0} \varepsilon_{0}}=\frac{\omega}{e} \leqslant \frac{2 \pi}{\lambda}
$$

$$
\mathscr{P}_{\text {ave }}=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right) \Rightarrow \frac{E_{o}^{2}}{2 \eta} \mathbf{a}
$$

## TRANSMISSION LINES

$1 \mathrm{~Np}=8.686 \mathrm{db}$
Propagation constant
$\gamma=\alpha+j \beta$
Wave velocity, $u=\frac{\omega}{\beta}=\mathrm{f} \lambda$
Wavelength, $\lambda=\frac{2 \pi}{\beta}$
Input impedance

$$
Z_{\text {in }}=Z_{o} \quad\left[\frac{Z_{L}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{L} \tanh \gamma \ell}\right]
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012

$$
\tanh (x \pm j y)=\frac{\sinh 2 x}{\cosh 2 x+\cos 2 y} \quad \pm j \frac{\sinh 2 y}{\cosh 2 x+\cos 2 y}
$$

$$
Z_{i n}=\frac{V_{s}(z)}{I_{s}(z)}=\frac{Z_{0}\left(V_{0}^{+}+V_{0}^{-}\right)}{V_{0}^{+}-V_{0}^{-}}
$$

Voltage and current at any point z
$V_{s}(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z}$
$I_{s}(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{0}^{-}}{Z_{0}} e^{\gamma z}$
$V_{0}^{+}=\frac{1}{2}\left(V_{0}+Z_{0} I_{o}\right)$
$V_{0}^{-}=\frac{1}{2}\left(V_{0}-Z_{0} I_{o}\right)$
Sending end current and voltage

$$
\begin{gathered}
I_{0}=\frac{V_{g}}{Z_{\text {in }}+Z_{g}} \\
V_{0}=Z_{\text {in }} I_{0}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{g}} V_{g}
\end{gathered}
$$

Reflection coefficient

$$
\Gamma_{L}=\frac{z_{L}-z_{0}}{Z_{L}+Z_{0}}
$$

Standing wave ratio

$$
S=\frac{V_{\text {max }}}{V_{\text {min }}}=\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|}
$$

## Antenna

Wavelength

$$
\lambda=\frac{c}{f}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Power radiated,
$P_{\text {rad }}$ or $W=I_{r m s}^{2} \times R_{\text {rad }}$

Effective area,
$A_{e}=\frac{\lambda^{2}}{4 \pi} \mathrm{D}$

Capture area of a circular aperture,

$$
A_{e}=\frac{\pi D^{2}}{4}
$$

Radiation Efficiency
$\eta=\frac{P_{r a d}}{P_{\text {in }}}=\frac{R_{r a d}}{R_{r a d}+R_{\ell}}$

Directivity
$\mathrm{D}=\frac{4 \pi U_{\text {max }}}{P_{\text {rad }}}$
$U_{\max }$ - Radiation intensity

$$
D=\frac{4 \pi}{\lambda^{2}} A_{e}
$$

Gain of an Antenna
$G=\eta D$
7-Radiation Efficiency
$G=K D$
$G=K \frac{4 \pi}{\lambda^{2}} A_{e}$
K- antenna factor , 1 if no losses present

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Gain in $d b, G_{d b}=10 \log _{10} G$
$Q$ factor
$Q=\frac{f_{r}}{\Delta f}$
$\Delta f$ - Bandwidth

1 nautical mile(nm) =1852m

Radar power density
$P=\frac{G_{d t} P_{r a d}}{4 \pi r^{2}}$

Power of the reflected signal at the radar

$$
P_{r}=\frac{A_{e} \sigma G_{d} P_{r a d}}{\left[4 \pi r^{2}\right]^{2}}
$$

## END OF EQUATION SHEET

END OF PAPER

