OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG(HONS) CIVIL ENGINEERING

SEMESTER ONE EXAMINATION 2022/2023

MATHEMATICAL METHODS FOR CIVIL ENGINEERING

MODULE NO: CIE4022

Date: Thursday, 12 January 2023
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:
There are SIX questions on this paper.
Answer any FIVE questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet $/$ supplementary information is provided at the end of question paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022

Q1
(a) Solve the following equation

$$
\log x^{4}-\log x^{3}=\log 5 x-\log 2 x
$$

(b) In an engineering process, two variables ' C ' and ' T ' are related by the equation;
$C=a+b T$, where ' a ' and ' b ' are constants
If, $T=100$ when $C=52$, and $T=400$ when $C=172$
Determine the values of ' a ' and ' b '.
(c) The stress ' f ' $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ in a material of a thick cylinder can be obtained from the equation,

$$
\frac{D}{d}=\sqrt{\frac{(f+p)}{(f-p)}}
$$

Calculate the stress (f), given that $D=20 \mathrm{~mm}, \mathrm{~d}=10 \mathrm{~mm}$ and $\mathrm{p}=1800 \mathrm{~N} / \mathrm{mm}^{2}$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022

Q2

(a) The deflection of a simply supported beam with a uniform load across the span is given by:

$$
y=\frac{5 w L^{4}}{384 E I}
$$

Where,
w- Uniform load (kN/m)
L- Length in meters,
E - Modulus of elasticity ($\mathrm{kN} / \mathrm{m}^{2}$)
I- Moment of Inertia (m^{4})
(i) Rearrange the equation by transposition to find an expression for L.
(ii) If the deflection of the beam (y) is limited to 10 mm , the magnitude of the uniform load (W) is $25 \mathrm{kN} / \mathrm{m}$, the elastic modulus (E) is $200 \mathrm{kN} / \mathrm{mm}^{2}$, and the second moment of area (I) is $2350 \mathrm{~cm}^{4}$, what is the length of the beam (L) in (m) correct to 2 decimals?
(8 marks)
(b) The sag ' 1 ' metres in a cable stretched between two supports, distance ' x ' m apart is given by:

$$
\mathrm{x}=12+\mathrm{x}^{2}
$$

Using 'quadratic formula' Determine the distance between supports(x) in mm, when the sag is 20 m .
(c) Evaluate $(3.039)^{4}$, correct to 6 significant figures using the binomial theorem

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q3
A structural metal specimen is tested in the laboratory within its elastic range. The stress- strain data obtained from the test is shown in Table 1.

Table 1. Stress - Strain Data

Strain $\left(\times 10^{-5}\right)$	Stress $\mathrm{N} / \mathrm{mm}^{2}$
0	0
7	4.9
13	8.7
21	15.0
27	18.4
31	24.2
39	27.3

(a) Plot the data from Table 1 on the graph paper provided, with the stress values on the Y - axis and the strain values on the X -axis using an appropriate scale.
(b) Draw an appropriate trend-line through the points and find the Young's Modulus of Elasticity which is given by the gradient of the graph
(c) Find the value of the strain at a stress of $25 \mathrm{~N} / \mathrm{mm}^{2}$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q4
(a) If $f(t)=\frac{2}{5} t^{2}-\frac{1}{t^{3}}+\frac{3}{t}-\sqrt{t}+1$
(i) Determine $f^{\prime \prime}(\mathrm{t})$
(3 marks)
(ii) Evaluate $f^{\prime \prime}(\mathrm{t})$ when $\mathrm{t}=1$
(2 marks)
(b) The distance 's' metres travelled by a car in t seconds after the brakes are applied is given by $s=25 t-2.5 t^{2}$

Determine
(i) The speed of the car (in $\mathrm{km} / \mathrm{hr}$) when the brakes are applied.
(ii) The distance the car travels before it stops.
(3 Marks)
(c) Determine
(i) $\int \frac{(2+3 x)^{2}}{\sqrt{x}} d x$
(5 marks)
(i) $\int \frac{3}{4 x^{4}} d x$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q5
(a) Evaluate
(i) $\int_{-1}^{2}\left(3-x^{2}\right) d x$
(2 marks)
(ii) $\int_{1}^{3}\left(x^{2}-4 x+3\right) d x$
(b) If $z=\cos 3 x \sin 4 y$ find
(i) $\frac{\partial z}{\partial x}$
(ii) $\frac{\partial z}{\partial y}$
(c) Determine the area enclosed by the three straight lines

$$
y=3 x ; \quad 2 y=x ; \quad y+2 x=5
$$

(a) The volume of a cone of height h and base radius r is given by $v=\frac{1}{3} \pi r^{2} h$.

Determine

(i) $\frac{\partial v}{\partial h}$
(1.5 marks)
(ii) $\frac{\partial v}{\partial r}$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022

Q6 continued

(b) If $y=4 \sin 3 x \cos 2 t$,find
(i) $\frac{\partial y}{\partial x}$
(2.5 marks)
(ii) $\frac{\partial y}{\partial t}$
(2.5 marks)
(c) Find the stationary values of the function $f(x, y)=x^{3}-6 x y+y^{3}$ and determine their nature.

END OF QUESTIONS

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Civil Engineering
Semester One Examination 2022/2023
Mathematical Methods for Civil Engineering
Module No. CIE4022

Formula Sheet

$$
x=\frac{-b \mp \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

$$
\begin{aligned}
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots \\
& (a+x)^{n}=a^{n}+n a^{n-1} x+\frac{n(n-1)}{2!} a^{n-2} x^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} x^{3}+\cdots
\end{aligned}
$$

Velocity $\mathrm{v}=\frac{d x}{d t}$
Acceleration $\mathrm{a}=\frac{d^{2} x}{d t^{2}}$
$\int u d v=u v-\int v d u$
$\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c$
$\sqrt[n]{a^{m}}=a^{\frac{m}{n}}$

END OF PAPER

