UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE
 BENG (HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2022/2023

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

INSTRUCTIONS TO CANDIDATES:

CANDIDATES REQUIRE:

There are SIX questions.

Answer TWO QUESTIONS from Part A and TWO QUESTIONS from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

PART A

Q1.
a) In a system of forces, the relationship between two forces in Newton F_{1} and F_{2} is given by:

$$
\begin{aligned}
& F_{1}+2 F_{2}+4=0 \\
& 5 F_{1}+3 F_{2}-1=0
\end{aligned}
$$

Use 'Matrices Method' to solve for F_{1} and F_{2}
b) Two alternating voltages are given by

$$
V_{1}=10 \sin \sin \omega t \text { volts } ; \quad V_{2}=14 \sin \sin \left(\omega t+\frac{\pi}{3}\right) \text { volts }
$$

Determine a sinusoidal expression for the resultant $\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$, using sine and cosine rule and compare the results graphically.
c) If $z=7\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)$, using De Moivre's theorem find z^{5}

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062
Q2.
a) Use partial Fractions to expand:

$$
Y(s)=\frac{\mathrm{x}^{2}+7 \mathrm{x}+3}{\mathrm{x}^{2}(\mathrm{x}+3)}
$$

b) The value of a lathe originally valued at AED 30000 depreciates 15% per annum.
i) Calculate its value after 4 years.
ii) If the machine is sold when its value is less than AED 5400. After how many years is the lathe sold?
(5 marks)
c) Solve the logarithmic equation

$$
\log x^{4}-\log x^{3}=\log 5 x-\log 2 x
$$

Q3.
a) The law connecting friction F and load L for an experiment is given by

$$
F=a L-M b,
$$

Where, $a, b \& M$ are constants. Given that when $F=6.84 N, L=2.3 N, M=4.4$ and when $F=1.23 \mathrm{~N}, \mathrm{~L}=8.5 \mathrm{~N}, \mathrm{M}=6.7$. Find the following:
i) the value of a \& b using determinant method
ii) find the value of F when $L=6.0$ and $M=0$
b) Use partial fractions to expand

$$
\frac{5 x^{2}-17 x+15}{(x-1)(x-2)^{2}}
$$

c) Solve, correct to 4 significant figures:

$$
\mathrm{e}^{(\mathrm{x}+1)}=3 \mathrm{e}^{(2 \mathrm{x}-5))}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062

PART B

Q4.

A steel cube block of 50 mm side is subjected to a force of 10 kN (tension), 12.5 kN (compression) and 7.5 kN (tension) along x, y and z directions respectively as shown in Figure Q4.

Figure Q4. Steel cube block

Determine the following:

a) Stresses in x, y and z directions
b) Assuming Poisson's ratio as 0.3 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force.
c) If modulus of elasticity $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
(8 marks)
d) The change in volume of the block due to loading specified above.
(5 marks)

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062

Q5. a) A steel rod of 3 cm diameter is enclosed centrally in hollow copper tube of external diameter 5 cm and internal diameter of 4 cm . The composite bar is then subjected to an axial pull of 45000 N as shown in Figure Q5a. If the length of each bar is 15 cm , determine
i. Stress developed in steel rod
(5 marks)
ii. Stress developed in copper tube
(5 marks)
Take modulus of elasticity, E of steel as $2.1 \times 10^{5} \mathrm{MPa}$ and E of copper as 1.1 X $10^{5} \mathrm{MPa}$
iii. Define compound bar and its rules of calculation

Figure Q5a. A Compound bar

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062

Q5 continued...

b) The following forces act at a point as shown in Figure Q5b:
(i) 20 N inclined at 30° towards North of East,
(ii) 25 N towards North,
(iii) 30 N towards North-West, and
(iv) 35 N inclined at 40° towards the South of West.

Find the magnitude and direction of the resultant force.

(10 marks)

Figure Q5b. Concurrent force system

Total 25 marks

Q6. A simply supported beam carries concentrated lateral loads at C and D, and a uniformly distributed lateral load over the length DF as shown in Figure Q6. Determine:
i. Reaction loads at the support
ii. Construct the shear force diagram for the beam
iii. Construct the bending moment diagram for the beam
iv. Find the position of maximum bending moment.

Figure Q6. Simply supported beam

END OF QUESTIONS

Total 25 marks

PLEASE TURN THE PAGE FOR FORMULA SHEET...

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062
FORMULA SHEET

Determinants

$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a n^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$

Binomial

$(1+x)^{n}=1+n x+2!(n-1) x^{2}+$
Validity $|x|<1$ Partial Fractions
$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062
Stress
Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area
Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain

Normal

$$
\varepsilon=\frac{\delta \ell}{\ell}
$$

Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)

Compound Bars
$P=P_{1}+P_{2}$
$P=\int_{1} A_{1}+\int_{2} A_{2}$

$$
\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}},
$$

Elastic Constants

$$
E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}
$$

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E}
$$

$$
\varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E}
$$

$$
\varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}
$$

$$
\varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
$$

$$
\varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)
$$

$$
\varepsilon_{v}=\frac{\delta V}{V}
$$

University of Bolton
Off Campus Division, Western International College
BEng (Hons) Mechanical Engineering
Semester One Examination 2022/2023
Engineering Principles I
Module No. AME 4062

Compressibility

$$
\begin{aligned}
& K=\frac{\sigma}{\varepsilon_{V}} \\
& \varepsilon_{V}=\frac{3 \sigma(1-2 v)}{E} \\
& E=3 K(1-2 v) \\
& E=2 G(1+v) \\
& e_{v}=\frac{\delta L}{L}(1-2 \mu)
\end{aligned}
$$

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

END OF FORMULA SHEET

END OF PAPER

