UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL \& ELECTRONICS ENGINEERING
 SEMESTER 1 EXAMINATION - 2022/2023

ENGINEERING ELECTROMAGNETISM

MODULE NO: EEE6012

INSTRUCTIONS TO CANDIDATES:

CANDIDATES REQUIRE:

There are SIX questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

Formula Sheet (attached).

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

QUESTION 1

a) A series RLC circuit is connected to a voltage source given by $v_{S}(t)=$ $150 \cos \omega t V$. Find (i) the phasor current I and (ii) the instantaneous current $i(t)$ for $\mathrm{R}=400 \Omega$, $\mathrm{L}=3 \mathrm{mH}, \mathrm{C}=16.67 \mathrm{nF}$, and $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
b) Two points in a cartesian coordinates are $\mathrm{P} 1(2,3,3)$ and $\mathrm{P} 2(-1,-5,-1)$. Find (i) the distance vector between P 1 and P 2 . (ii) the angle between vectors $\overrightarrow{O P 1}$ and $\overrightarrow{O P 2}$ using the cross product between them. (iii) the angle between vector $\overrightarrow{O P 2}$ and the y-axis.
[12 marks]
c) Transform vector $\mathbf{A}=\tilde{\boldsymbol{x}}(x+y)+\tilde{\boldsymbol{y}}(y-x)+\tilde{\boldsymbol{z}} z$ from Cartesian to Cylindrical coordinates.
[6 marks]

QUESTION 2

a) A scalar quantity of $V=r z^{2} \cos 2 \phi$. Find its directional derivative along the direction $\mathbf{A}=\boldsymbol{r} \mathbf{2} \mathbf{-} \mathbf{~} \mathbf{z} \mathbf{3}$ and evaluate it at ($1,0.5 \pi, 2$).
b) Find the divergence and the curl of the given vector $\mathrm{A}=e^{-7 y}(\tilde{x} \sin 3 x+\tilde{y} \cos 3 \mathrm{x})$ at $x=10$ and $y=1.0$
[4 marks]
c) Four charges of $100 \mu C$ each are located in free space at points with Cartesian coordinates $(-3,0,0),(3,0,0),(0,-3,0)$ and $(0,3,0)$. Find the force on a $200 \mu C$ charge located at $(0,0,4)$. All distances are in metres.

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

QUESTION 3

(a) The potential difference between two points in volts is numerically equal to the work in joules per coulomb necessary to move a coulomb of charge between the two points. A two-wire airline (single-phase system) has conductors of straight cylindrical bare wires with identical radius of 25 mm and spacing of 0.544 m .
(i) What is the charge on each conductor?
(ii) What is the voltage drop between the two conductor and
(iii) Find the capacitance of a two-wire airline (single-phase system). Then calculate the capacitance of each wire to ground.
(b) Briefly explain the operation of the Linear Variable Differential Transformer LVDT sensor shown in Figure Q3b.

Figure Q3b
(c) A square coil of 200 turns and 0.5 m long sides is in a region with a uniform magnetic flux density of 0.2 T . If the maximum magnetic torque exerted on the coil is 4×10^{-2} N.m what is the current flowing in the coil? And what is the MMF produced by the coil?

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Question 4

(a) State the Faraday's law of electromotive force (voltage) induced by time-varying magnetic flux.
[5 Marks]
(b) The transformer shown in the Figure Q4 consists of a long wire coincident with the z-axis carrying a current $I=I_{0} \cos \omega t$, coupling magnetic energy to a toroidal coil situated in the $x-y$ plane and centred at the origin. The toroidal core uses iron material with relative permeability μ_{r}, around which 100 turns of a tightly wound coil serves to induce a voltage Vemf, as shown in the Figure Q4.

Figure Q4
i. Derive an expression for $\mathrm{V}_{\mathrm{emf}}$.
[9 Marks]
ii. Calculate $V_{\text {emf }}$ for $f=60 \mathrm{~Hz}, \mu_{r}=4000, a=5 \mathrm{~cm}, b=6 \mathrm{~cm}, c=2 \mathrm{~cm}$, and $I_{0}=50 \mathrm{~A}$.
(c) Identify any three types of EMF sensors.

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Question 5

(a) For a distortionless line, $R^{\prime} C^{\prime}=L^{\prime} G^{\prime}$, where R^{\prime} is the resistance, C^{\prime} is the capacitance, L^{\prime} is the inductance and G^{\prime} is the conductance. If α represents the attenuation constant, β represents the phase constant and Z_{0} denotes the characteristic impedance, Show that:

$$
\alpha=R^{\prime} \sqrt{\frac{C^{\prime}}{L^{\prime}}}=\sqrt{R^{\prime} G^{\prime}}, \quad \beta=\omega \sqrt{L^{\prime} C^{\prime}}, \quad Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} .
$$

(b) For a distortionless line with $Z_{0}=50 \mathrm{~W}, \alpha=20(\mathrm{mNp} / \mathrm{m}), u_{p}=2.5 \times 10^{8}(\mathrm{~m} / \mathrm{s})$, find the line parameters and I at 100 MHz .
[12 Marks]

Question 6

(a) Usually attached to antennas, a duplexer is useful in satellite communications because it separates the path of received signal from that of a transmitted signal. Explain why duplexers are sometimes referred to as transceiver switch.
[5 Marks]
(b) An electric field strength of $10 \mu \mathrm{~V} / \mathrm{m}$ is to be measured at an observation point $\theta=$ $\pi / 2,500 \mathrm{~km}$ from a half-wave (resonant) dipole antenna operating in air at 50 MHz .
i. What is the length of the dipole?
[3 Marks]
ii. Calculate the current that must be fed to the antenna.
iii. Find the average power radiated by the antenna.
iv. If a transmission line with $Z_{0}=75 \Omega$ is connected to the antenna, determine the standing wave ratio.

END OF QUESTIONS

Formula Sheet follows on the next page...
PLEASE TURN THE PAGE...

Page 6 of 12
School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

EEE6012 Formula sheet

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

Time-domain sinusoidal functions $Z(t)$ and their cosinereference phasor-domain counterparts \widetilde{Z}, where $z(t)=\mathfrak{R e}\left[\widetilde{Z} e^{j \omega t}\right]$.

Page 7 of 12
School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Summary of vector relations.

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of A $\quad\|\mathbf{A}\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{Z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{gathered} \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P=\left(x_{1}, y_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P=\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\hat{\mathbf{R}} R_{1}$, for $P=\left(R_{1}, \theta_{1}, \phi_{1}\right)$
Base vectors properties	$\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathrm{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathrm{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathrm{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}= \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}= \\ \hat{\mathbf{r}} \times \hat{\phi}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}} \end{aligned}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}=1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\phi}=\hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \end{gathered}$
Dot product $\quad \mathbf{A} \cdot \mathbf{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product $\mathbf{A} \times \mathbf{B}=$	$\left\|\begin{array}{ccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{array}\right\|$	$\left\|\begin{array}{ccc} \hat{\mathbf{r}} & \hat{\phi} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{Z} \\ B_{r} & B_{\phi} & B_{Z} \end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\boldsymbol{\theta}} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} d \mathbf{s}_{x} & =\hat{\mathbf{x}} d y d z \\ d \mathbf{s}^{\prime} & =\hat{\mathbf{y}} d x d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} d x d \mathbf{z} \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\phi} R d R d \theta \end{aligned}$
Differential volume $d v=$	$d x d y d z$	$r d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

PLEASE TURN THE PAGE..

Page 8 of 12
School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Coordinate transformation relations.

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\phi}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cylindrical to Cartesian	$\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\phi} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\phi} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cartesian to spherical	$\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$	$\begin{aligned} \hat{\mathbf{R}}= & \hat{\mathbf{x}} \sin \theta \cos \phi \\ & +\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ \hat{\boldsymbol{\theta}}= & \hat{\mathbf{x}} \cos \theta \cos \phi \\ & +\hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ \hat{\mathbf{\phi}}= & -\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$	$\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & +A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$
Spherical to Cartesian	$\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & +\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ & +\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$
Cylindrical to spherical	$\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$
Spherical to cylindrical	$\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{Z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$

ELECTROSTATICS:

$$
\begin{aligned}
& \mathbf{F}_{12}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R_{12}}, \mathbf{F}=\frac{Q}{4 \pi \varepsilon_{0}} \sum_{k=1}^{N} \frac{Q_{k}\left(\mathbf{r}-\mathbf{r}_{k}\right)}{\left|\mathbf{v}-\mathbf{r}_{k}\right|^{3}}, \mathbf{E}=\frac{\mathbf{F}}{Q}, \mathbf{E}=\int \frac{\rho_{L} d l}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R}, \mathbf{E}=\int \frac{\rho_{S} d S}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R}, \mathbf{E}=\int \frac{\rho_{v} d v}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R} \\
& \mathbf{E}=\frac{\rho_{S}}{2 \varepsilon_{0}} \mathbf{a}_{n}, \mathbf{E}=\frac{\rho_{L}}{2 \pi \varepsilon_{0} \rho} \mathbf{a}_{\rho}, Q=\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v, \nabla \cdot \mathbf{D}=\rho_{v}, W=-Q \int_{A}^{B} \mathbf{E} \cdot d \ell, V_{A B}=\frac{W}{Q}=-\int_{A}^{B} \mathbf{E} \cdot d \ell, V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& \oint \mathbf{E} \cdot d \ell=0, \nabla \times \mathbf{E}=0, \mathbf{E}=-\nabla V, W_{E}=\frac{1}{2} \sum_{k=1}^{n} Q_{k} V_{k}, W_{E}=\frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} d v=\frac{1}{2} \int \varepsilon_{0} E^{2} d v, \mathbf{J}=\rho_{v} \mathbf{u}, I=\int_{S} \mathbf{J} \cdot d \mathbf{S}, \mathbf{J}=\sigma \mathbf{E}, \\
& R=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\int \mathbf{E} \cdot d \mathbf{I}}{\int \sigma \mathbf{E} \cdot d \mathbf{S}}, \mathbf{D}=\varepsilon \mathbf{E}, \nabla \cdot \mathbf{J}=-\frac{\partial \rho_{v}}{\partial t}, E_{1 t}=E_{2 t}, D_{1 n}-D_{2 n}=\rho_{S}, D_{1 n}=D_{2 n}, \frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\varepsilon_{r 1}}{\varepsilon_{r 2}} \\
& \nabla^{2} V=\frac{\rho_{v}}{\varepsilon}, \nabla^{2} V=0, C=\frac{Q}{V}=\frac{\varepsilon \oint \mathbf{E} \cdot d \mathbf{S}}{\int \mathbf{E} \cdot d \mathbf{I}}, W_{E}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{Q^{2}}{2 C}, C=\frac{Q}{V}=\frac{2 \pi \varepsilon L}{\ln \frac{b}{a}}, C=\frac{Q}{V}=\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}}, R C=\frac{\varepsilon}{\sigma} \\
& \epsilon_{O}=8.85 X 10^{-12} F / m \quad, \mu_{o}=4 \pi X 10^{-7} \mathrm{H} / m
\end{aligned}
$$

Page 9 of 12
School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

MAGNETOSTATICS:
$\mathbf{H}=\int_{L} \frac{I d \mathbf{I} \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\int_{S} \frac{\mathbf{K} d S \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\int_{v} \frac{\mathbf{J} d v \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\frac{I}{4 \pi \rho}\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \mathbf{a}_{\phi}, \mathbf{H}=\frac{I}{2 \pi \rho} \mathbf{a}_{\phi}, \mathbf{a}_{\phi}=\mathbf{a}_{\ell} \times \mathbf{a}_{\rho}$,
$\oint \mathbf{H} \cdot d \mathbf{I}=I_{e n c}, \nabla \times \mathbf{H}=\mathbf{J}, \mathbf{H}=\frac{I}{2 \pi \rho} \mathbf{a}_{\phi}, \mathbf{H}=\frac{1}{2} \mathbf{K} \times \mathbf{a}_{n}, \mathbf{B}=\mu \mathbf{H}, \Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}, \oint \mathbf{B} \cdot d \mathbf{S}=0, \nabla \cdot \mathbf{B}=0, \mathbf{H}=-\nabla \mathrm{V}_{m}$, $\mathbf{B}=\nabla \times \mathbf{A}, \mathbf{A}=\int_{L} \frac{\mu_{0} I d \mathbf{I}}{4 \pi R}, \mathbf{A}=\int_{S} \frac{\mu_{0} \mathbf{K} d S}{4 \pi R}, \mathbf{A}=\int_{v} \frac{\mu_{0} \mathbf{J} d v}{4 \pi R}, \Psi=\oint_{L} \mathbf{A} \cdot d \mathbf{I}, \mathbf{F}=Q(\mathbf{E}+\mathbf{u} \times \mathbf{B}), d \mathbf{F}=I d \mathbf{I} \times \mathbf{B}, \mathbf{B}_{1 n}=\mathbf{B}_{2}$ $\left(\mathbf{H}_{1}-\mathbf{H}_{2}\right) \times \mathbf{a}_{n 12}=\mathbf{K}, \mathbf{H}_{1 t}=\mathbf{H}_{2 t}, \frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\mu_{1}}{\mu_{2}}, L=\frac{\lambda}{I}=\frac{N \psi}{I}, M_{12}=\frac{\lambda_{12}}{I_{2}}=\frac{N_{1} \psi_{12}}{I_{2}}, W_{m}=\frac{1}{2} \int \mathbf{B} \cdot \mathbf{H} d v=\frac{1}{2} \int \mu H^{2} d v$

WAVES AND APPLICATIONS:
$\mathrm{V}_{e m f}=-\frac{d \psi}{d t} \quad, \mathrm{~V}_{e m f}=\oint_{L} \mathbf{E} \cdot d \mathbf{I}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S} \quad, \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad, \mathrm{~V}_{e m f}=\oint_{L} \mathbf{E}_{m} \cdot d \mathbf{I}=\oint_{L}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{I}$
$\mathrm{V}_{e m f}=\oint_{L} \mathbf{E} \cdot d \mathbf{I}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S}+\oint_{L}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{I} \quad, \mathbf{J}_{d}=\frac{\partial \mathbf{D}}{d t} \quad, \nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{d t} \quad, \beta=\frac{2 \pi}{\lambda}, \underline{z}=\alpha+j \beta$
$\alpha=\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left[\frac{\sigma}{\omega \varepsilon}\right]^{2}}-1\right]}, \quad \beta=\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left[\frac{\sigma}{\omega \varepsilon}\right]^{2}}+1\right]}, \mathbf{E}(z, t)=E_{0} e^{-\alpha \varepsilon} \cos \left(\omega t-\beta_{z}\right) \mathbf{a}_{x}$
$|\underline{\eta}|=\frac{\sqrt{\mu / \varepsilon}}{\left[1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}\right]^{1 / 4}}, \quad \tan 2 \theta_{\eta}=\frac{\sigma}{\omega \varepsilon}, \mathbf{H}=\frac{E_{0}}{|\underline{\eta}|} e^{-\alpha \varepsilon} \cos \left(\omega t-\beta_{z}-\theta_{\eta}\right) \mathbf{a}_{y}, \tan \theta=\frac{\sigma}{\omega \varepsilon}, \mathbf{a}_{E} \times \mathbf{a}_{H}=\mathbf{a}_{k}$
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \approx 377 \Omega, p(t)=\mathbf{E} \times \mathbf{H}, p_{\text {ave }}(z)=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}^{*}{ }_{s}\right), p_{\text {ave }}(z)=\frac{E_{0}^{2}}{2|\underline{\eta}|} e^{-2 \alpha z} \cos \theta_{\eta} \mathbf{a}_{z}, P_{\text {ave }}=\int_{S} p_{\text {ave }} \cdot d \mathbf{S}$,
$\Gamma=\frac{E_{r o}}{E_{\text {io }}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}, \tau=\frac{E_{\text {to }}}{E_{\text {io }}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}, s=\frac{\left|\mathbf{E}_{1}\right|_{\max }}{\left|\mathbf{E}_{1}\right|_{\min }}=\frac{\left|\mathbf{H}_{1}\right|_{\max }}{\left|\mathbf{H}_{1}\right|_{\min }}=\frac{1+|\Gamma|}{1-|\Gamma|}, \quad k_{i} \sin \theta_{i}=k_{t} \sin \theta_{t}$,
$\Gamma_{\|}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}, \tau_{\|}=\frac{E_{\text {io }}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}, \sin ^{2} \theta_{B \|}=\frac{1-\mu_{2} \varepsilon_{1} / \mu_{1} \varepsilon_{2}}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}}$,
$\Gamma_{\perp}=\frac{E_{r o}}{E_{\text {io }}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}, \tau_{\perp}=\frac{E_{\text {to }}}{E_{\text {io }}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}, \sin ^{2} \theta_{B \perp}=\frac{1-\mu_{1} \varepsilon_{2} / \mu_{2} \varepsilon_{1}}{1-\left(\mu_{1} / \mu_{2}\right)^{2}}$
$\omega=\beta c$

$$
S=\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}=\frac{1+|\Gamma|}{1-|\Gamma|} \quad \Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

Antenna and Radar formula

Dipole
Solid angle:

$$
\Omega_{\mathrm{p}}=\iint_{4 \pi} F(\theta, \phi) d \Omega
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012

For Transmission line

	Propagation Constant $\gamma=\alpha+j \beta$	Phase Velocity u_{p}	Characteristic Impedance Z_{0}
General case	$\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}$	$u_{\mathrm{p}}=\omega / \beta$	$Z_{0}=\sqrt{\frac{\left(R^{\prime}+j \omega L^{\prime}\right)}{\left(G^{\prime}+j \omega C^{\prime}\right)}}$
Lossless $\left(R^{\prime}=G^{\prime}=0\right)$	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathbf{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\sqrt{L^{\prime} / C^{\prime}}$
Lossless coaxial	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\left(60 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \ln (b / a)$
Lossless two-wire	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$\begin{aligned} Z_{0}= & \left(120 / \sqrt{\varepsilon_{\mathbf{r}}}\right) \\ & \cdot \ln [(D / d)+\sqrt{(D / d)} \end{aligned}$
Lossless parallel-plate	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\left(120 \pi / \sqrt{\varepsilon_{\mathrm{r}}}\right)(h / w)$

Notes: (1) $\mu=\mu_{0}, \quad \varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}, c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and $\sqrt{\mu_{0} / \varepsilon_{0}} \simeq(120 \pi) \Omega$, where ε_{r} is the relative permittivity of insulating material. (2) For coaxial line, a and b are radii of inner and outer conductors. (3) For two-wire line, $d=$ wire diameter and $D=$ separation between wire centers. (4) For parallel-plate line, $w=$ width of plate and $h=$ separation between the plates.

Distortionless line

$$
\gamma=\sqrt{R G}+\mathrm{j} \omega \sqrt{L C}
$$

$\frac{R}{L}=\frac{G}{C} \quad Z_{o}=\sqrt{\frac{L}{C}}$

Open-circuited line

$$
\tilde{V}_{\mathrm{oc}}(d)=V_{0}^{+}\left[e^{j \beta d}+e^{-j \beta d}\right]=2 V_{0}^{+} \cos \beta d,
$$

$$
\tilde{L}_{\mathrm{oc}}(d)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{j \beta d}-e^{-j \beta d}\right]=\frac{2 j V_{0}^{+}}{Z_{0}} \sin \beta d,
$$

$$
Z_{\mathrm{in}}^{\mathrm{oc}}=\frac{\tilde{V}_{\mathrm{oc}}(l)}{\tilde{I}_{\mathrm{oc}}(l)}=-j Z_{0} \cot \beta l .
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester 1 Examination - 2022/2023
Engineering Electromagnetism
Module No. EEE6012
Short-circuited line
$\widetilde{V}_{\mathrm{sc}}(d)=V_{0}^{+}\left[e^{j \beta d}-e^{-j \beta d}\right]=2 j V_{0}^{+} \sin \beta d$,
$\tilde{I}_{\mathrm{sc}}(d)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{j \beta d}+e^{-j \beta d}\right]=\frac{2 V_{0}^{+}}{Z_{0}} \cos \beta d$,
$Z_{\mathrm{sc}}(d)=\frac{\widetilde{V}_{\mathrm{sc}}(d)}{\widetilde{I}_{\mathrm{sc}}(d)}=j Z_{0} \tan \beta d$.
$j \omega L_{\mathrm{eq}}=j Z_{0} \tan \beta l, \quad$ if $\tan \beta l \geq 0$
$\frac{1}{j \omega C_{\mathrm{eq}}}=j Z_{0} \tan \beta l, \quad$ if $\tan \beta l \leq 0$
$Z_{\text {in }}=Z_{\mathrm{o}}\left[\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{\mathrm{o}}+j Z_{L} \tan \beta \ell}\right]$
$Z_{\text {in }}=Z_{\mathrm{o}}\left[\frac{Z_{L}+Z_{\mathrm{o}} \tanh \gamma \ell}{Z_{\mathrm{o}}+Z_{L} \tanh \gamma \ell}\right]$
$V_{\mathrm{o}}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{g}} V_{g} \quad I_{\mathrm{o}}=\frac{\hat{V}_{g}}{Z_{\text {in }}+Z_{g}}$
$V_{o}=V_{l} e^{j \beta t}$
For a bistatic radar (one in which the transmitting and receiving antennas are separated), the power received is given by

$$
P_{r}=\frac{G_{d t} G_{d r}}{4 \pi}\left[\frac{\lambda}{4 \pi r_{1} r_{2}}\right]^{2} \sigma P_{\mathrm{rad}}
$$

For a monostatic radar, $r_{1}=r_{2}=r$ and $G_{d t}=G_{d r}$.

$$
P_{\mathrm{rec}}=P_{\mathrm{t}} G_{\mathrm{t}} G_{\mathrm{r}}\left(\frac{\lambda}{4 \pi R}\right)^{2}
$$

END OF PAPER

