UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) CIVIL ENGINEERING

SEMESTER ONE EXAMINATION 2022/23

WATER ENGINEERING AND THE ENVIRONMENT

MODULE NO: CIE6012

Date: Wednesday 11 ${ }^{\text {th }}$ January 2023
Time: 14:00-17:00

INSTRUCTIONS TO CANDIDATES:

This is an open book examination.
There are FIVE questions
Answer ALL questions
Important Note: Show all solution steps in detail along with the units.

If only final answers are given, no mark will be given.

School of Engineering
BEng (Hons) Civil Engineering
Semester One Examination 2022/23
Water Engineering and the Environment
Module No CIE6012

Question 1

A concrete lined trapezoidal channel (Figure Q1) with a uniform flow has a water depth of 1.5 m . The base width of the channel is 4.0 m and the side slope $(\mathrm{H}: \mathrm{V}=1.5: 1)$. Manning's roughness coefficient (n) is 0.015 and the channel bed slope $(S)=00012$. Calculate the
(a) discharge passing through the cross section of the channel and the
(b) mean flow velocity.

Figure Q1
Total (20 Marks)

Question 2

Given the ordinates of a 4-hr unit hydrograph Table 1 of Q2. Derive a 12-hr unit hydrograph for the same catchment.

Table 1 of Q2

Time (hr)	0	4	8	12	16	20	24	28	32	36	40	44	48	52
4-hr UH	0	24	36	60	80	120	100	70	60	42	30	18	10	0

School of Engineering
BEng (Hons) Civil Engineering
Semester One Examination 2022/23
Water Engineering and the Environment
Module No CIE6012

Question 3

The ordinates of a 3-hr unit hydrograph (3-hr UH) are given in Table 1 of Q3

Table 1 of Q3

Duration (hr)	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42
3-hr (UH)	0	30	60	75	68	60	50	42	38	24	18	12	8	4	0

The hyetograph of the gross rainfall of three successive pulses each of 3 hours duration is given in Table 2 of Q3.

Table 2 of Q3

Duration (hr)	$0-3$	$3-6$	$6-9$
Gross Hyetograph (cm)	3.0	5.0	4.0

Assume the losses are $0.20 \mathrm{~cm} / \mathrm{hr}$. Baseflow is constant $=10 \mathrm{~m}^{3} / \mathrm{s}$. Determine

1. The hyetograph of the effective rainfall (Excess rainfall)
2. The direct runoff hydrograph (DRH)
3. The total runoff hydrograph (TRH)
4. Plot the UH and the TRH on the same graph

School of Engineering
BEng (Hons) Civil Engineering
Semester One Examination 2022/23
Water Engineering and the Environment
Module No CIE6012

Question 4

A trapezoidal channel carries a discharge equals $8 \mathrm{~m}^{3} / \mathrm{s}$. The bottom width of the channel is 3 m , the side slope $(\mathrm{H}: \mathrm{V}=1.5: 1)$. Assume a range of water depths between 0.25 m and 3.5 m . Take the incremental increase in water depth $=0.25 \mathrm{~m}$.
(a) Calculate the values of specific energy corresponding to each assumed water depth (present your calculation in a table).
(5 Marks)
(b) Plot the relationship between the calculated values of specific energy and the assumed water depths.
(5 Marks)
(a) Estimate the critical depth and the minimum specific energy (use the plotted figure in part (b) above).
(5 Marks)
(b) Estimate the alternate depths when the specific energy $=2.5 \mathrm{~m}$ (use the plotted figure in part (b) above).
(5 Marks)

Total (20 Marks)

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Civil Engineering
Semester One Examination 2022/23
Water Engineering and the Environment
Module No CIE6012

Question 5

A river of a rectangular section has the following hydraulic characteristics:
$Q=400 \mathrm{~m}^{3} / \mathrm{s} ;$ width $=30 \mathrm{~m} ;$ water depth $=3 \mathrm{~m}$; bed slope $=3.5 \times 10^{-4}$.
The sediment has a sediment diameter $\mathrm{d}=0.012 \mathrm{~m}$; specific gravity $\mathrm{s}=2.65$. Given at water temperature $\mathrm{T}=20^{\circ} \mathrm{C}\left(\nu=1 \times 10^{-6} \mathrm{~m}^{-2} / \mathrm{s}\right) ; \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Estimate the bed load transport using the Meyer Peter \& Muller models.

