UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng(Hons) MECHANICAL ENGINEERING

SEMESTER 1 EXAM 2022-23

ADVANCED THERMOFLUIDS AND CONTROL MODULE NUMBER: AME6015

Date: Wednesday 11th January 2023

Time: 10:00 – 12:00

INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer any <u>FOUR</u> questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper for reference.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Question 1

d)

A block diagram for a furnace temperature control system is shown in Figure Q1 below:

- a) Determine the system damping ratio, natural frequency, damped frequency, and steady state gain. [7 marks]
- b) Determine the time domain response of the system, y(t), to a unit impulse input, r(t). [6 marks]
- c) For a unit step input, determine the system rise time, peak time, maximum percentage overshoot, and settling time for a 2% tolerance.

[6 marks]

If the input of
$$r(t) = 90, t \ge 0$$
 and $0, t \le 0$

is applied, analyse the system steady state error.

[6 marks]

Total: 25 marks

Question 2

A block diagram for a digital control system for a steam-turbine speed control is shown below in Figure Q2.

Question 3

A dynamic system is shown in the block diagram below, Figure Q3(a),

- a) Show how the block diagram in figure Q3(a) could be reduced to describe the output over the input C/R. [6 marks]
- b) From the Matlab graph shown in Q3(b) on the next page, estimate the gain and phase margins [6 marks]
- c) Sketch the magnitude and phase for the following functions.

(i)
$$G1(s) = \frac{10}{0.2s+1}$$
 [2 marks]
(ii) $G2(s) = \frac{2500}{s^2 + 80s + 2500}$ [2 marks]

(iii)
$$G3(s) = \frac{8}{s}$$
 [2 marks]

Sketch the final result of G1(s)*G2(s)*G(s) and estimate the phase and gain margin. [7 marks]

Question 3 follows over the page...

d)

....Question 3 continued

Figure 3(b)

Total: 25 marks Please turn the page...

Question 4

a) Steam at 7 bar, dryness fraction 0.9 expands reversibly at constant pressure until the temperature is 200 °c. Calculate the work input and heat supplied per unit mass of steam during the process.

[15 Marks]

b) Steam at 0.05 bar, 100 °c is to be condensed completely by a reversible constant pressure process. Calculate the heat rejected per kilogramme of steam and the change of specific entropy.

[10 Marks]

Total: 25 marks

Question 5

a) Derive the Darcy Weisbach Equation $h_f = \frac{f LV^2}{2gD}$ for the loss of Head due to friction in a pipeline using the energy equation

$$\frac{P_1}{\rho g} + Z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + Z_2 + \frac{V_2^2}{2g} + HL$$

Where HL= the friction head loss hf.

- [17marks]
- b) Oil with specific gravity of 0.85 with kinematic viscosity of 6x10⁻⁴ m²/s flows in a 15 cm pipe at a rate of 0.020 m³/s. What is the head loss per 100 m length of pipe?

[8 marks]

Total marks: 25 marks

Question 6

a)

A Prototype gate valve, which will control the flow I a pipe system conveying paraffin, is to be studied in a model. The pressure drop ΔP is expected to depend upon the gate opening h, the overall depth d, the velocity V, density ρ and viscosity μ . Perform dimensional analysis to obtain the relevant non-dimensional groups.

[15 marks]

b)

A Carnot engine is used in a nuclear power plant. It receives 1500 Mw of power as a heat transfer from a source at 327 o c and rejects thermal waste to a nearby river at 27 °c. The river temperature rises by 3 K because of this power rejection by the plant,

Calculate:

- i) The mass flow rate of the river
- ii) The efficiency of the power plant

Take the value of specific heat capacity Cp=4.177kJ/kg K[

[10 marks]

Total marks: 25 marks

END OF QUESTIONS Formula sheet follows over the page...

PLEASE TURN THE PAGE FOR FORMULA SHEETS AND PROPERTY TABLES...

Formula sheet

Blocks with feedback loop

$$G(s) = \frac{Go(s)}{1 + Go(s)H(s)}$$
 (for a negative feedback)

$$G(s) = \frac{Go(s)}{1 - Go(s)H(s)}$$
 (for a positive feedback)

Steady-State Errors

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{1 + G_o(s)} \theta_i(s)] \text{ (for the closed-loop system with a unity feedback)}$$

$$e_{\mu} = \lim_{i \to 0} s \frac{1}{1 + \frac{G_0(s)}{1 + G_0(s)[H(s) - 1]}} \theta_i(s)] \text{ (if the feedback H(s) \neq 1)}$$

$$e_{zz} = \frac{1}{1 + \lim_{z \to 1} G_0(z)}$$
 (if a digital system subjects to a unit step input)

Laplace Transforms

A unit impulse function

A unit step function

A unit ramp function

First order Systems

$$G(s) = \frac{\theta_s}{\theta_i} = \frac{G_{ss}(s)}{\frac{\pi}{2} + 1}$$

$$\left(\frac{d\theta_a}{dt}\right) + \theta_{\theta} = G_{at}\theta_{t}$$

$$V_0 = G_u (1 - e^{-t/\tau})$$
 (for a unit step input)

 $\theta_0 = AG_m(1 - e^{-t/\tau})$ (for a step input with size A)

 $\theta_o(t) = G_u(\frac{1}{\tau})e^{-(t/\tau)}$ (for an impulse input)

_aplace transform and	d Z transform table	4
Laplace Domain	Time Domain	Z Domain
1	$\delta(t)$ unit impulse	1,
$\frac{1}{s}$	u(t) unit step	$\frac{z}{z-1}$
$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$
$\frac{1}{s+a}$	e ^{-at}	$\frac{z}{z - e^{-aT}}$
$\frac{1}{s(s+a)}$	$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{z(1-e^{-aT})}{a(z-1)(z-e^{-aT})}$
$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{+bt}$	$\frac{z(e^{-aT} - e^{-bT})}{a(z - e^{aT})(z - e^{-bT})}$
$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin(bt)$	$\frac{ze^{-aT}\sin(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
$\frac{s+a}{\left(s+a\right)^2+b^2}$	$e^{-at}\cos(bt)$	$\frac{z^{2} - ze^{-aT}\cos(bT)}{z^{2} - 2ze^{-aT}\cos(bT) + e^{-2aT}}$

Laplace Tr	ransforms of comme	on functions
Functions		
Unit pulse (Dirac delta distribution)	$\delta(t)$	F(s)=1
Unit step function	1(t)	$F(s) = \frac{1}{s}$
Ramp function	f(t) = at	$F(s) = \frac{1}{s^2}$
Sine function	$f(t) = \sin at$	$F(s) = \frac{a}{s^2 + a^2}$
Cosine function	$f(t) = \cos at$	$F(s) = \frac{s}{s^2 + a^2}$
Exponential function	$f(t) = e^{at}$	$F(s) = \frac{1}{s-a}$
Operations		Y
Differentiation	L(f'(t))	sF(s)-f(0)
Integration	$L\left(\int f(t)dt\right)$	$\frac{1}{s}F(s)$
Time shift	Lf(t-a)	$e^{-as}F(s)$

$$W = \frac{P_1 V_1 - P_2 V_2}{n - 1} \qquad W = P (v_2 - v_1)$$

$$W = PV \ln \left(\frac{V_2}{V_1}\right)$$

$$Q = C_d A \sqrt{2}gh$$

$$V_1 = C \sqrt{2g h_2} \left(\frac{\rho g_m}{\rho g} - 1\right)$$

$$\sum F = \frac{\Delta M}{\Delta t} = \Delta M$$

$$F = \rho QV$$

$$Re = V L \rho/\mu$$

$$dQ = du + dw$$

$$du = cu dT$$

$$dw = pdv$$

$$pv = mRT$$

$$h = ht + xhfg$$

$$s = st + xsfg$$

$$v = x Vg$$

$$Q - w = \sum mh$$

$$F = \frac{2\pi L\mu}{L_s} \left(\frac{R_2}{R_3}\right)$$

 $S_g = C_{pL} L_s \frac{T}{273} + \frac{h_{fl}}{T_f}$ $S = C_{\mu t} \operatorname{L}_{n} \frac{T_{f}}{273} + \frac{h f_{e}}{T_{f}} + C_{\mu e} \operatorname{L}_{n} \frac{T}{T_{e}}$ $S_2 - S_1 = MC_p L_n \frac{T_2}{T_1} - MRL_n \frac{P_2}{P_1}$ $F_D = \frac{1}{2}CD \rho u^2 s$ $F_L = \frac{1}{2} C_L \rho u^2 s$ $S_{\rho} = \frac{d}{ds}(P + \rho gZ)$ $Q = \frac{\pi D^4 \Delta p}{128 \mu L}$ $h_f = \frac{64}{R} \left(\frac{L}{D}\right) \left(\frac{v^2}{2g}\right)$ $h_r = \frac{4fLv^2}{d2g}$ $f = \frac{16}{Re}$ $h_{\rm m} = \frac{K {\rm v}^2}{2g}$ $h_{m} = \frac{k(V_{1} - V_{2})^{2}}{2g}$ $\zeta = \left(1 - \frac{T_L}{T_H}\right)$ $S_{gam} = (S_2 - S_1)) + \frac{Q}{T}$ $W = (U_1 - U_2) - T_o(S_1 - S_2) - T_o S_{gas}$ $W_{*} = W - P_{*}(V_{2} -$ $(U_1 = U_2) - T_0(S_1 - S_2) + P_0(V_1 - V_2)$ PLEASE TURN THE PAGE

 $\Phi = (U - U_0) - T(S - S_0) + Po(V - V_o)$ $I = ToS_{gen}$ $V = r\omega$ $\lambda = \mu \frac{V}{t}$ $F = \frac{2\pi L \mu u}{2\pi L \mu u}$ R₂ $T = \frac{\pi^2 \mu N}{60t} \left(R_1^4 - R_2^4 \right)$ $p = \frac{\rho g Q H}{1000}$

Quantity	Symbol	Dimensions		Quantity	Symbol	Dimensions	
Mass	m	м		Mass /Unit Area	m/A ²	ML -2	
Length	1	L		Ì	Mass moment	ml	ML
Time	t	т]	Moment of Inertia	I	ML 2	
Temperature	Т	θ	1		1.5		
Velocity	u	LT -1]	Pressure /Stress	p /σ	ML-17-2	
Acceleration	а	LT-2	1	Strain	Ť	M °L OT °	
lomentum/Impulse	mv	MLT -1		Elastic Modulus	E	ML -1T -2	
Force	F	MLT -2		Flexural Rigidity	EL	ML ³ T ⁻²	
Energy - Work	w	ML ² T ⁻²]	Shear Modultes	G	ML -1T -2	
Power	Ρ	ML ² T ⁻³		Torsional rigidity	GJ	ML ³ T ⁻²	
Moment of Force	М	ML 2T -2		Stimess	k	MT -2	
ngular momentum	-	ML ² T ⁻¹		Angular stiffness	Τ/η	ML 2T -2	
Angle	η	M °L °T °		Flexibility	1/k	M -1T 2	
Angular Velocity	ω	T -1		Vorticity	-	T -1	
Angular acceleration	α	T-2		Circulation		L ² T ⁻¹	
Area	A	12		Viscosity	μ	ML -1T -1	
Volume	v	L	1	Kinematic Viscosity	τ	L ² T ⁻¹	
First Moment of Area	Ar	23]	Diffusivity	-	L ² T ⁻¹	
Second Moment of Area	I	L ⁴]	Friction coefficient	f /μ	M °L °T °	
Density	P	ML ⁻³		Restitution coefficient		M °L °T °	
Specific heat- Constant Pressure	C p	L ² T ⁻² θ ⁻¹		Specific heat- Constant volume	с,	L ² T ⁻² θ ⁻¹	

DIMENSIONS FOR CERTAIN PHYSICAL QUANTITIES

Note: a is identified as the local sonic velocity, with dimensions L .T -1

22

END OF PAPER