UNIVERSITY OF BOLTON

INSTITUTE OF MANAGEMENT

BA (HONS) ACCOUNTANCY

SEMESTER ONE EXAMINATIONS 2022/2023

QUANTITATIVE METHODS FOR ACCOUNTANTS

MODULE NO: ACC4018

Date: Wednesday 11 January 2023
Time: $10.00-1.00$

There are four compulsory questions on this paper.

Answer all four questions.
All questions carry equal marks.
Calculators may be used but full workings must be shown.

Formulae books, which contain statistical tables.

Graph paper (four sheets).

Institute of Management
BA(Hons) Accountancy
Semester One Examination 2022/23
Quantitative Methods
Module No ACC4018

Question 1

A farmer produces two products: X and Y . The farmer employs 150 skilled workers and 100 unskilled workers, and works 40 hours a week.
Production of each product X takes 5 skilled hours and 2 unskilled hours. Whereas, production of product Y takes 4 skilled hours and 6 unskilled hours.

The contribution to profit that can be obtained is $£ 15$ per unit from X, and £25 per unit from Y.
a) Arrange the given information into tabular form.
b) Translate the problem into a linear programming one, identifying and writing down the objective function and the constraints.
(3 marks)
c) Use the algebraic method to calculate how many units of product X and Y would be produced to maximise profitability.
d) Plot the inequalities on a graph and identify the feasible region.

Institute of Management
BA(Hons) Accountancy
Semester One Examination 2022/23
Quantitative Methods
Module No ACC4018

Question 2

A high school boy takes part in a long jump competition. He takes three attempts at jumping and scoring the highest score.

The probabilities are as follows:
They have a 0.70 probability of successfully scoring the highest score at their first attempt.

If they succeed at the first attempt, the same probability applies on the next two attempts.

If they are not successful at any time, the probability of succeeding on any subsequent attempts is only 0.2 .

Use a tree diagram to find the probabilities that:
a) Draw a tree diagram to show the probabilities of success or failure.
b) She is successful on all her first three attempts.
c) She fails at the first attempt but succeeds on the next two.
d) She is successful just once in three attempts
e) She is still not successful after the third attempt

Institute of Management
BA(Hons) Accountancy
Semester One Examination 2022/23
Quantitative Methods
Module No ACC4018

Question 3

The Table below shows a sample of distances that 40 students travelled (Km).

25	51	36	60	19	58	46	30
34	27	52	33	61	30	51	43
56	39	20	54	44	48	24	25
17	64	43	50	38	38	40	50
30	38	54	37	42	36	59	33

a) Produce a grouped frequency distribution (GFD) table for this data.
(5 marks)
b) Draw a histogram of the grouped frequency distribution, and on the same graph estimate the mode of travel.
c) From the GFD calculate the mean deviation.
d) From the GFD calculate the mean distance travelled.
e) Calculate the corresponding variance and standard deviation.

Institute of Management
BA(Hons) Accountancy
Semester One Examination 2022/23
Quantitative Methods
Module No ACC4018

Question 4

A marketing team wants to determine the relationship between the cost of advertising and sales.

The monthly sales are thought to depend on the advertising.
The table below shows a record for a random sample over 10 months.
Data shows:

Month	Sales (£'000)	Advertising cost (£'000)
1	8	10
2	12	14
3	4	8
4	16	18
5	12	14
6	20	28
7	10	12
8	4	8
9	8	10
10	12	14

Required:

Please show all calculation workings.
a) Draw a scatter diagram of these results.
b) Calculate the equation of the least square regression line of " y on x " and then draw this line on the scatter diagram.
c) Calculate the Pearson's correlation coefficient, r and the coefficient of determination r^{2}.
d) Use the regression equation/line to predict the likely cost of 2 months if output is 4 , and 16 respectively.

STATISTICAL FORMULAE

FREQUENCY DISTRIBUTIONS

Required fractile from a GFD $=$ Lower class limit of fractile class + $\left[\begin{array}{ll}\text { Fractile item - cumulative frequency } & \text { Fractile } \\ \text { up to lower class limit of fractile class } & \times \begin{array}{l}\text { class } \\ \text { Fractile class frequency }\end{array} \\ \text { interval }\end{array}\right]$
Mean $\overline{\mathbf{x}}=\frac{\text { sum of values }}{\text { total number of items }}=\frac{\sum \mathrm{x}}{\mathrm{n}}$
with GFD: $\overline{\mathrm{x}}=\frac{\sum(\mathrm{f} \times \mathrm{MP})}{\sum \mathrm{f}} \quad \mathrm{MP}=$ class Mid Point
Range $=$ Highest value - Lowest value
Quartile deviation $=\left(Q_{3}-Q_{1}\right) / 2$
Mean deviation $=\frac{\sum(x-\bar{x})}{n}$ The sign of $(x-\bar{x})$ must be ignored

Standard deviation $(s)=\sqrt{\left[\frac{\sum(x-\bar{x})^{2}}{n}\right]}$

Variance: s^{2}
Coefficient of variation $=\frac{\mathbf{s}}{\overline{\mathbf{x}}} \times 100$
Pearson's Coefficient of Skewness $(\mathbf{S k})=\frac{3(\text { Mean }- \text { Median })}{\text { Standard Deviation }}$

CORRELATION

Regression line of " y on x ": $\quad y=a+b x$
where

$$
b=\frac{n \times \sum x y-\sum x \times \sum y}{n \times \sum x^{2}-\left(\sum x\right)^{2}} \quad a=\frac{\sum y-b \times \sum x}{n} \quad n=\text { number of pairs }
$$

Regression line of " x on y ": $\quad x=a+b y$
where

$$
b=\frac{n \times \sum y x-\sum y \times \sum x}{n \times \sum y^{2}-\left(\sum y\right)^{2}} \quad a=\frac{\sum x-b \times \sum y}{n}
$$

Pearson product-moment Coefficient of Correlation (r)

$$
r=\frac{n \times \sum x y-\sum x \times \sum y}{\sqrt{\left(\left(n \times \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \times \sum y^{2}-\left(\sum y\right)^{2}\right)\right)}}
$$

Coefficient of determination $\quad \mathbf{r}^{2}=b_{y x} \times b_{x y} \quad \Rightarrow \quad \mathbf{r}=\sqrt{b_{y x} \times b_{x y}}$
Covariance: $\operatorname{Cov}(\mathbf{x}, \mathbf{y})=\frac{\sum(x-\bar{x})(y-\bar{y})}{n} \quad \Rightarrow \quad r=\frac{\operatorname{Cov}(x, y)}{\left(s_{x} \times s_{y}\right)}$

Spearman's Coefficient of Rank Correlation:

where
$\mathbf{d}=$ the difference between the rankings of the same item in each series

PROBABILITY

Multiplication rule: the prob. of a sequential event is the product of all its elementary events

$$
\mathbf{P}(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C} \cap \ldots)=\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B}) \times \mathbf{P}(\mathbf{C}) \ldots
$$

Addition rule: the prob of one of a number of mutually exclusive events occurring is the sum of the probabilities of the events

$$
\mathbf{P}(\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z} \cup \ldots)=\mathbf{P}(\mathbf{X})+\mathbf{P}(\mathbf{Y})+\mathbf{P}(\mathbf{Z}) \ldots
$$

Bayes' Theorem

$$
P(E \mid S)=\frac{P(E) \times P(S \mid E)}{\sum_{i}\left(P\left(E_{i}\right) \times P\left(S \mid E_{i}\right)\right)}
$$

\mathbf{S} is the subsequent event and there are \mathbf{n} prior events, \mathbf{E}.

PRORABILITY DISTRIBUTIONS

Normal distribution: standardised value $\quad z=\frac{x-\mu}{\sigma}$
where μ and σ are the mean and standard deviation of the actual distribution

ESTIMATION \& CONFIDENCE INTERVALS

- $\bar{x}, \boldsymbol{s}, \boldsymbol{p}$-sample mean, standard deviation, proportion/percentage
- μ, σ, π-population mean, standard deviation, proportion/percentage
$\Rightarrow \bar{x}$ is a point estimate of μ
s is a point estimate of σ p is a point estimate of π

Confidence intervals for a population percentage or proportion

$$
\pi=p \pm \mathbf{z} \sqrt{\frac{p(100-p)}{n}} \quad \text { for a percentage } \quad \pi=p \pm \mathbf{z} \sqrt{\frac{p(1-p)}{n}} \quad \text { for a proportion }
$$

When using normal tables: $\alpha=100$ - confidence level
Estimation of population mean (μ) when σ is known

$$
\mu=\bar{x} \pm z \sigma / \sqrt{n} \quad(\text { normal tables for } \mathbf{z})
$$

Estimation of population mean (μ) for large sample size and σ unknown

$$
\mu=\bar{x} \pm \mathrm{z} / / \sqrt{n} \quad(\text { normal tables for } \mathrm{z})
$$

Estimation of population mean (μ) for small sample size and σ unknown $\mu_{0}=\bar{x} \pm t s / \sqrt{n} \quad(t$-tables for $t)$

When using t-tables: $v=n-1$
Confidence intervals for paired (dependent) data

$$
\mu_{\mathrm{d}}=\overline{\boldsymbol{x}_{\mathrm{d}}} \pm t s_{\mathrm{d}} / \sqrt{n_{\mathrm{d}}} \quad \text { where " } \mathrm{d} \text { " refers to the calculated differences }
$$

Simple interest $A_{n}=P\left(1+\frac{i}{100} \times n\right)$
Compound intereat $a A_{n+}=P\left(1+\frac{i}{100}\right)^{n}$
Effective APR $=\left(\left(1+\frac{i}{100}\right)^{n}-1\right) \times 100 \%$
Straight line depreciation $A_{n}=P\left(1-\frac{i}{100} \times n\right)$
Depreciation $A=P\left(1-\frac{i}{100}\right)^{n}$
The future value of an initial investment A_{0} is given by $A=A_{0}\left(1+\frac{i}{100}\right)^{n}$ and the present value of an accumulated inyestment A_{n} is given by $A_{0}=\frac{A n}{\left(1+\frac{i}{100}\right)^{n}}$ or
$A\left(1+\frac{i}{100}\right)^{-n}$ $A\left(1+\frac{i}{100}\right)^{-n}$

Loan account

If an annuity is purchased for a sum of A_{0} at a axte of $; \%$ compounded each period then the periodic sepayment is
$R=\frac{i A_{0}}{1-(1+i)^{-n}}$
and the present value of the anmuity \mathcal{A}_{0} (the loan) is
$A_{0}=\mathrm{R} \times \frac{(1+i)^{n}-1}{(1+i)^{n}}$ or equivalentiy $A_{0}=\frac{\mathrm{R}\left[1-(1+i)^{-n}\right]}{i}$

Savings account

A aqvings plan/finking fund invested for n periods at a nominal rate of $; \%$ compounded each period with 2 periodic investment of $£_{1} P$ matures to $\$$ where
$S=P(1+i) \times\left(\frac{1+i)^{n}-1}{i}\right)$.

Table 2 Percentage points of the t-dlstribution

$v=$ degrees of freedom $\alpha=$ total percentage in tails

Table 3 Percentage points of the standard normal curve

One-tailed
-
2.5\%

One tail	5%	2.5%	1%	0.5%	0.1%	0.05%
Two tails	10%	5%	2%	1%	0.2%	0.1%

One tail	5%	2.5%	1%	0.5%	0.1%	0.05%
Two tails	10%	5%	2%	1%	0.2%	0.1%

-

Two-tailed

[^0]
[^0]: $\alpha=$ total percentage in tails

