UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

B.Sc. (Hons) MATHEMATICS

SEMESTER 1 EXAMINATIONS 2021/22

COMPLEX VARIABLES

MODULE NO: MMA6006

Date: Thursday 13 ${ }^{\text {th }}$ January 2022
Time: 10.00-12.15

INSTRUCTIONS TO CANDIDATES:

1. Answer ALL FOUR questions.
2. All questions carry EQUAL marks.
3. Maximum marks for each part/question are shown in brackets.

School of Engineering
B.Sc. (Hons) Mathematics

Semester 1 Examinations 2021/22
Complex Variables
MMA6006

1. (a) (i) The function $f(z)=u(x, y)+i v(x, y)$ is analytic. Show that $u(x, y)$ and $v(x, y)$ satisfy $\nabla^{2} u=\nabla^{2} v=0$ where

$$
\begin{equation*}
\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} . \tag{6marks}
\end{equation*}
$$

(ii) Show that

(iii) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function and $u(x, y)$ is the function given in Question 1(a)(ii) above, find the function $v(x, y)$ given that $v(0,0)=0$.
(iv) Hence find the function $f(z)=u+i v$ in Question 1(a)(iii) above in a form in which the right-hand side is also written as a function of z.
(b) Show that $f(z)=\bar{z}$, where \bar{z} is the complex conjugate of z, is not an analytic function.

School of Engineering
B.Sc. (Hons) Mathematics

Semester 1 Examinations 2021/22
Complex Variables
MMA6006
2. Find the value of

$$
\int_{C} z^{2} d z
$$

along the paths C described in each of the cases (a), (b) and (c) below, all of which refer to the diagram Figure Q2:

(a) $\quad C$ is the line $O B$ joining the points $z=0$ to $z=1+i$;
(10 marks)
(b) C is the path $O A B$;

(10 marks)
(c) C is the closed contour $O A B O$, using your results for Questions 2(a) and (b) above and any other method.

School of Engineering
B.Sc. (Hons) Mathematics

Semester 1 Examinations 2021/22
Complex Variables
MMA6006
3. (a) If

$$
f(z)=\frac{z}{(z+2)(z-2 i)^{3}}
$$

and D, E and F are circles with radius 3 and centres at $-2 i, 0$ and $3 i$ respectively, find:
(i) $\oint_{D} f(z) d z$;

(iii) $\quad \oint_{F} f(z) d z$.
(b) State the value of

$$
\oint_{F} \frac{d z}{(z-2 i)^{3}}
$$

where F is defined in part (a) above.

Hence, or otherwise, find

$$
\oint_{F} \frac{2 d z}{(z+2)(z-2 i)^{3}} .
$$

School of Engineering
B.Sc. (Hons) Mathematics

Semester 1 Examinations 2021/22
Complex Variables
MMA6006
4. (a) Evaluate

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{3}}
$$

by considering a suitable contour integral.
(b) (i) The function $f(z) / g(z)$ has a simple pole at the point $z=a$. Use L'Hopital's rule to show that the residue at this point is

$$
f(a) / g^{\prime}(a)
$$

(ii) Show that the sum of residues on the negative real axis, including $z=0$, of
is

where m is a positive real number excluding zero.
(10 marks)

END OF QUESTIONS

