UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BSc(Hons) MECHATRONICS

SEMESTER ONE EXAMINATION 2021-22

ELECTRONIC ENGINEERING FOR MECHATRONICS

MODULE NO: MEC6005

Date: Thursday $13^{\text {th }}$ January 2022 Time: 14:00-16:00

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.
Answer any FOUR questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Question 1

a) Define the following terms (1.5 marks for each definition):
i. Frequency
ii. Period
iii. Phase angle
iv. Peak to peak value
v. RMS value
vi. Internal resistance
vii. Current
viii. Resistance
b) An AC ammeter reads 11A rms current through a resistive load, and a voltmeter reads 360 V rms drop across the load.
(i) What are the peak values and the average values of the alternating current and voltage?
(ii) Calculate the load resistance.
[2 marks]
c) Find the Thevenin equivalent of the circuit given in Figure Q1 below.
[5 marks]

Fig.Q1
Total: 25 marks

PLEASE TURN THE PAGE....

Question 2

a) For the circuit shown below (Figure Q2a), considering the RLoad as the load resistance

Figure Q2a
(i) Derive the equivalent Thevenin circuit between points " A " and " B "
(ii) Derive the equivalent Norton circuit between points "A" and "B"
b) For the following circuit (Figure Q2b), using superposition theorem or otherwise, find out the current flowing through the 10Ω resistor.

Figure Q2b

Total: 25 marks

Question 3

a) A $13 \mu \mathrm{~F}$ capacitor has 12 V across it. What quantity of charge is stored in it?
b) Draw a diagram of a parallel plate capacitor showing the charge on the plates and the \mathbf{E} field in the region between the plates. [5 marks]
c) Explain what is meant by the dielectric strength $\mathbf{E}_{\mathbf{m}}$ of an insulator?
d) For the capacitor charging circuit shown in Figure Q3d below, where the capacitor is initially discharged, sketch two separate graphs for the current I versus time and the capacitor voltage V_{c} versus time.
[5 marks]

Figure Q3d - An initially uncharged capacitor being charged through a resistor.
e) Explain with the assistance of a diagram what happens to the structure of the curves for I versus time and V_{c} versus time if the time constant $\square=R C$ for the circuit increases?

Question 4

For the circuit shown in figure Q4, calculate:
a) Currents I1, I2, and I3
b) Voltages across R1, R2, and R3
c) Powers P1, P2, and P3
d) Draw the complete voltages and currents phasor diagram
e) The peak 13 current at resonance frequency

Where $v=17 \cos 314 t, R_{1}=R_{2}=2 \Omega, R_{3}=4 \Omega, X_{L 2}=j 2 \Omega, X_{L 3}=j 6 \Omega, X_{C}=-j 4 \Omega$

Figure Q4

Total: 25 marks

PLEASE TURN THE PAGE....

Question 5

a) For the combinational digital circuit shown below in Figure. Q5a:

Figure Q5a Digital Circuit
i) Find out the Boolean expressions at output Q.
[7 marks]
ii) Complete the following truth table for this digital circuit:
b) Fill in the blanks by converting the following numbers into their respective missing decimal and binary equivalents:
i) $11000_{2}=$ \qquad 10
ii) $100010_{2}=$ \qquad 10
iii) $\mathrm{A} 2_{16}=$ \qquad 10
iv) \qquad $16=130610$
v) \qquad ${ }^{16}=2610$
c) What does adding redundant information into numeric and alphabetic codes provide?

Question 6

a) In a Wheatstone bridge $A B C D$, a galvanometer is connected between $B \& D$, and a battery of 5 V emf and 3Ω internal resistance is connected between $\mathrm{A} \& \mathrm{C}$. A resistor of unknown voltage is connected between $\mathrm{A} \& \mathrm{~B}$. When the bridge is balanced, the resistance between $\mathrm{B} \& \mathrm{C}$ is 50Ω, between $\mathrm{C} \& D$ is 5Ω and between D\&A is 100Ω. Calculate:
(i) the value of unknown resistance between point A \& B and
(ii) the total current supplied by the battery.
b) Use network conversion to find the total current of the circuit in figure 6b

Figure 6b
[11 marks]

Total: 25 marks

END OF QUESTIONS

Formula sheet follows on next page....

PLEASE TURN THE PAGE....

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:
Ohm's law: $V=I R$
Power: $P=I V$

Magnetic flux: $\Phi=B A$
Induced voltage: $V=\Delta \Phi / \Delta t$
Force experienced by charged particle $=q v B \sin \theta$
Motional emf: $E=B l v \quad f=\frac{p n}{120}$
Magnitude of the Reactance of Inductor $L: \quad X_{L}=2 \pi f L$
Magnitude of the Reactance of Capacitor $C: X_{C}=\frac{1}{2 \pi f C}$
Pythagorean theorem: $c^{2}=a^{2}+b^{2}$
Tangent function: $\tan \mathrm{A}=$ opposite/adjacent
$\mu_{o}=4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}, \epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$H=\frac{N . I}{l}, \quad B=u H$

MMF $=$ N.I
$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}, \quad E=\frac{1}{2} L I^{2}$
Three-phase systems.
$\mathrm{C}=\mathrm{Q} / \mathrm{V}, \quad \mathrm{C}=\frac{\epsilon A}{d}, \quad \mathrm{E}=\frac{1}{2} C V^{2}$
$v_{L}=L \cdot \frac{d i_{L}}{d t}$
$i_{C}=C \frac{d v_{C}}{d t}$
$f=\frac{p n}{120}$

Delta to Star conversion:

Star to Delta conversion:
$R_{a}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}$
$R_{b}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}$
$R_{c}=\frac{R_{3} R_{1}}{R_{1}+R_{2}+R_{3}}$
$R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{b}}$
$R_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{c}}$
$R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{a}}$

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Summary Table for Series and Parallel RL Círcuits

X_{L} and R in Series	X_{L} and R in Parallel
I the same in X_{L} and R	V_{T} the same across X_{L} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{L}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{L}^{2}}$
$Z=\sqrt{R^{2}+X_{L}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{R} lags V_{L} by 90°	I_{L} lags I_{R} by 90°
$\theta=\arctan \frac{X_{L}}{R}$	$\theta=\arctan \left(-\frac{I_{L}}{I_{R}}\right)$

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_{C} and R in Parallel
I the same in X_{C} and R	V_{T} the same across X_{C} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{C}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{C}^{2}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{C} lags V_{R} by 90°	I_{C} leads I_{R} by 90°
$\theta=\arctan \left(-\frac{X_{C}}{R}\right)$	$\theta=\arctan \frac{I_{C}}{I_{R}}$

