## UNIVERSITY OF BOLTON

## SCHOOL OF ENGINEERING

## BENG (HONS) ELECTRICAL \& ELECTRONICS

 ENGINEERING
## SEMESTER ONE EXAMINATION 2021/2022

## ENGINEERING ELECTROMAGNETISM

## MODULE NO: EEE6012

Date: Friday 14 ${ }^{\text {th }}$ January 2022

INSTRUCTIONS TO CANDIDATES:

Time: 10:00-12:00

There are SIX questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

Formula Sheet (attached).

School of Engineering<br>BEng (Hons) Electrical and Electronics Engineering<br>Semester One Examination 2021/2022<br>Engineering Electromagnetism<br>Module Number: EEE6012<br>\section*{Question 1}

Q1. a) An electromagnetic wave is propagating in the $y$-direction in a lossy medium with attenuation constant $\alpha=0.5 \frac{\mathrm{~Np}}{\mathrm{~m}}$. If the wave's electric-field amplitude is $100 \mathrm{~V} / \mathrm{m}$ at $\mathrm{y}=0$. How far can the wave travel before its amplitude will have been reduced to (i) $15 \mathrm{~V} / \mathrm{m}$, (ii) $1.5 \mathrm{~V} / \mathrm{m}$, (iii) $1 \mu V / \mathrm{m}$.
b) A series RLC circuit is connected to a voltage source given by $v_{S}(t)=150 \cos \omega t V$. Find (i) the phasor current I and (ii) the instantaneous current $i(t)$ for $\mathrm{R}=400 \Omega, \mathrm{~L}=3$ $\mathrm{mH}, \mathrm{C}=20 \mathrm{n} F$, and $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
[8 marks]
c) Two points in a Cartesian coordinates are P1(1,2,3) and P2(-1,-2,3). Find
(i) the distance vector between P1 and P2.
(ii) the angle between vectors $\overrightarrow{O P 1}$ and $\overrightarrow{O P 2}$ using the cross product between them.
(iii) the angle between vector $\overrightarrow{O P 2}$ and the y -axis.

Total 25 marks

## Question 2

a) a) Transform vector $\mathbf{A}=\tilde{\boldsymbol{x}}(x+y)+\tilde{\boldsymbol{y}}(y-x)+\tilde{\boldsymbol{z}} z$ from Cartesian to Cylindrical coordinates.
b) A scalar quantity of $V=r z^{2} \cos 2 \phi$. Find its directional derivative along the direction $\mathbf{A}=\tilde{\boldsymbol{r}} \mathbf{2}-\tilde{\mathbf{z}} \mathbf{3}$ and evaluate it at (1,0.5 $\pi, 2$ ).
[9 marks]
c) Find the divergence and the curl of the given vector $\mathrm{A}=e^{-7 y}(\tilde{x} \sin 3 x+y \cos 3 \mathrm{x})$ at $\mathrm{x}=10$ and $\mathrm{y}=1.0$.

## School of Engineering

BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

## Question 3

a) A circular disk sitting at the $x-y$ plane with $z=0$ is characterised by an azimuthally symmetric surface charge density that increases linearly with radius $r$ from zero to $8 \mathrm{C} / \mathrm{m}^{2}$ at $\mathrm{r}=4 \mathrm{~cm}$. Find the total charge present on the disk surface.
[6 marks]
b) Two point charges with $\mathrm{q} 1=3 \times 10^{-5} \mathrm{C}$ and $\mathrm{q} 2=-5 \times 10^{-5} \mathrm{C}$ are located in free space at points with Cartesian coordinates $(1,3,-1)$ and $(-3,1,-2)$ respectively . Find
i) the electric field $\mathbf{E}$ at $(3,1,-2)$
[7 marks]
ii) the force on a $7 \times 10^{-5} \mathrm{C}$ charge located at that point. All distances are in metres.
c) Derive a formula for the inductance of a cylindrical conductor due to
(i) internal flux and (ii) external flux assuming the conductor is surrounded by air.
[9 marks]
Total 25 marks

## Question 4

a) An Ethernet cable has $\mathrm{L}=0.22 \mu \mathrm{Hm}^{-1}$ and $\mathrm{C}=86 \mathrm{pFm}^{-1}$. What is the wavelength at 10 MHz ?
[6 marks]
b) Assuming the loss resistance of a half-wave dipole antenna to be negligibly small and ignoring the reactance component of its antenna impedance, calculate the standing wave ratio on a 50-W transmission line connected to the dipole antenna. Note that a half wave dipole has a radiation resistance of $73 \Omega$.
[6 marks]
c) A transponder with a bandwidth of 400 MHz uses polarization diversity. If the bandwidth allocated to transmit a single telephone channel is 4 kHz , how many telephone channels can be carried by the transponder?
d) A remote sensing satellite is in circular orbit around the earth at an altitude of $1,100 \mathrm{~km}$ above the earth's surface. What is its orbital period? Assume that the radius of the earth is $6,378 \mathrm{~km}$.

## School of Engineering

BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

## Question 5

A source $\left[\tilde{V}_{g}=100 \angle 0^{\circ} V, Z_{g}=R_{g}=50 \Omega, f=100 \mathrm{MHz}\right.$ ] is connected to a lossless transmission line $[L=0.25 \mu \mathrm{H} / \mathrm{m}, C=100 \mathrm{pF} / \mathrm{m}, l=10 \mathrm{~m}]$. For loads of $Z_{L}=R_{L}=100 \Omega$, determine the
a) reflection coefficient at the load
b) standing wave ratio
[2 marks]
c) input impedance at the transmission line input terminals
d) voltage along the transmission line for load of $Z_{L}=R_{L}=100 \Omega$.
[10 marks]

Total 25 marks

## Question 6

a) An antenna has a field pattern given by $E(\theta)=\cos \theta \cos 2 \theta$ for $0^{\circ} \leq \theta \leq 90^{\circ}$. Calculate the:
i. half-power beamwidth (HPBW)
ii. beamwidth between first nulls (FNBW)
b) A lossless resonant half-wavelength dipole antenna, with input impedance of 73 $\Omega$, is connected to a transmission line whose characteristic impedance is 50 ohms. Assuming that the pattern of the antenna is given by approximately $U=$ $B_{0} \sin ^{3} \theta$. Determine the maximum dB gain of this antenna.
[15 marks]

Total 25 marks

## END OF QUESTIONS

Formula sheet follows over the page....
PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

## Formula sheet

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

Time-domain sinusoidal functions $Z(t)$ and their cosinereference phasor-domain counterparts $\widetilde{Z}$, where $z(t)=\Re \mathfrak{R e}\left[\widetilde{Z} e^{j \omega t}\right]$.

| $z(t)$ | $\widetilde{Z}$ |
| :---: | :---: |
| $A \cos \omega t$ | $\Leftrightarrow A$ |
| $A \cos \left(\omega t+\phi_{0}\right)$ | $\Leftrightarrow A e^{j \phi_{0}}$ |
| $A \cos \left(\omega t+\beta x+\phi_{0}\right)$ | $\Leftrightarrow A e^{j\left(\beta x+\phi_{0}\right)}$ |
| $A e^{-\alpha x} \cos \left(\omega t+\beta x+\phi_{0}\right)$ | $\Leftrightarrow A e^{-\alpha x} e^{j\left(\beta x+\phi_{0}\right)}$ |
| $A \sin \omega t$ | $\leftrightarrow A e^{-j \pi / 2}$ |
| $A \sin \left(\omega t+\phi_{0}\right)$ | $\leftrightarrow A e^{j\left(\phi_{0}-\pi / 2\right)}$ |
| $\frac{d}{d t}(z(t))$ | $\leftrightarrow \quad j \omega \widetilde{Z}$ |
| $\frac{d}{d t}\left[A \cos \left(\omega t+\phi_{0}\right)\right]$ | $\Leftrightarrow j \omega A e^{j \phi_{0}}$ |
| $\int z(t) d t$ | $\leftrightarrow \frac{1}{j \omega} \widetilde{Z}$ |
| $\int A \sin \left(\omega t+\phi_{0}\right) d t$ | $\Leftrightarrow \quad \frac{1}{j \omega} A e^{j\left(\phi_{0}-\pi / 2\right)}$ |

## School of Engineering

BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

Summary of vector relations.

|  | Cartesian <br> Coordinates | Cylindrical Coordinates | Spherical <br> Coordinates |
| :---: | :---: | :---: | :---: |
| Coordinate variables | $x, y, z$ | $r, \phi, z$ | $R, \theta, \phi$ |
| Vector representation $\mathbf{A}=$ | $\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$ | $\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$ | $\hat{\mathbf{R}} A_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$ |
| Magnitude of $\mathrm{A} \quad\|\mathbf{A}\|=$ | $\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$ | $\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{Z}^{2}}$ | $\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$ |
| Position vector $\overrightarrow{O P_{1}}=$ | $\begin{gathered} \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P=\left(x_{1}, y_{1}, z_{1}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P=\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$ | $\hat{\mathbf{R}} R_{1}$, <br> for $P=\left(R_{1}, \theta_{1}, \phi_{1}\right)$ |
| Base vectors properties | $\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathrm{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathrm{y}}=\hat{\mathrm{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathrm{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$ | $\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\phi}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \end{aligned}$ | $\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}=1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \end{gathered}$ |
| Dot product $\quad \mathbf{A} \cdot \mathbf{B}=$ | $A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$ | $A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{Z}$ | $A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$ |
| Cross product $\mathbf{A} \times \mathbf{B}=$ | $\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{Z}\end{array}\right\|$ | $\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{Z} \\ B_{r} & B_{\phi} & B_{Z}\end{array}\right\|$ | $\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$ |
| Differential length $d \mathbf{l}=$ | $\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$ | $\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} \boldsymbol{r} d \phi+\hat{\mathbf{z}} d z$ | $\hat{\mathbf{R}} d R+\hat{\boldsymbol{\theta}} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$ |
| Differential surface areas | $\begin{aligned} & d \mathbf{s}_{x}=\hat{\mathbf{x}} d y d z \\ & d \mathbf{s}_{y}=\hat{\mathbf{y}} d x d z \\ & d \mathbf{s}_{z}=\hat{\mathbf{z}} d x d y \end{aligned}$ | $\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$ | $\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\phi} R d R d \theta \end{aligned}$ |
| Differential volume $d V=$ | $d x d y d z$ | $r d r d \phi d z$ | $R^{2} \sin \theta d R d \theta d \phi$ |

School of Engineering
BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

Coordinate transformation relations.

| Transformation | Coordinate Variables | Unit Vectors | Vector Components |
| :---: | :---: | :---: | :---: |
| Cartesian to cylindrical | $\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$ | $\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\phi}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$ | $\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$ |
| Cylindrical to Cartesian | $\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$ | $\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\phi} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\phi} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$ | $\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$ |
| Cartesian to spherical | $\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$ | $\begin{aligned} \hat{\mathbf{R}}= & \hat{\mathbf{x}} \sin \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ \hat{\boldsymbol{\theta}}= & \hat{\mathbf{x}} \cos \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ \hat{\boldsymbol{\phi}}= & -\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$ | $\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & \quad+A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$ |
| Spherical to Cartesian | $\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$ | $\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & +\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ & \quad+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$ | $\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$ |
| Cylindrical to spherical | $\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$ | $\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$ | $\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$ |
| Spherical to cylindrical | $\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \end{aligned}$ | $\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$ | $\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{Z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$ |

## ELECTROSTATICS:

$\mathbf{F}_{12}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R_{12}}, \mathbf{F}=\frac{Q}{4 \pi \varepsilon_{0}} \sum_{k=1}^{N} \frac{Q_{k}\left(\mathbf{r}-\mathbf{r}_{k}\right)}{\left|\mathbf{r}-\mathbf{r}_{k}\right|^{3}}, \mathbf{E}=\frac{\mathbf{F}}{Q}, \mathbf{E}=\int \frac{\rho_{L} d l}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R}, \mathbf{E}=\int \frac{\rho_{S} d S}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R}, \mathbf{E}=\int \frac{\rho_{v} d v}{4 \pi \varepsilon_{0} R^{2}} \mathbf{a}_{R}$
$\mathbf{E}=\frac{\rho_{S}}{2 \varepsilon_{0}} \mathbf{a}_{n}, \mathbf{E}=\frac{\rho_{L}}{2 \pi \varepsilon_{0} \rho} \mathbf{a}_{\rho}, Q=\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{v} \rho_{v} d v, \nabla \cdot \mathbf{D}=\rho_{v}, W=-Q \int_{A}^{B} \mathbf{E} \cdot d \ell, V_{A B}=\frac{W}{Q}=-\int_{A}^{B} \mathbf{E} \cdot d \ell, V=\frac{Q}{4 \pi \varepsilon_{0} r}$ $\oint \mathbf{E} \cdot d \ell=0, \nabla \times \mathbf{E}=0, \mathbf{E}=-\nabla V, W_{E}=\frac{1}{2} \sum_{k=1}^{n} Q_{k} V_{k}, W_{E}=\frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} d v=\frac{1}{2} \int \varepsilon_{0} E^{2} d v, \mathbf{J}=\rho_{v} \mathbf{u}, I=\int_{S} \mathbf{J} \cdot d \mathbf{S}, \mathbf{J}=\sigma \mathbf{E}$,
$R=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\int \mathbf{E} \cdot d \mathbf{I}}{\int \sigma \mathbf{E} \cdot d \mathbf{S}}, \mathbf{D}=\varepsilon \mathbf{E}, \nabla \cdot \mathbf{J}=-\frac{\partial \rho_{v}}{\partial t}, E_{1 t}=E_{2 t}, D_{1 n}-D_{2 n}=\rho_{S}, D_{1 n}=D_{2 n}, \frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\varepsilon_{r 1}}{\varepsilon_{r 2}}$
$\nabla^{2} V=-\frac{\rho_{v}}{\varepsilon}, \nabla^{2} V=0, C=\frac{Q}{V}=\frac{\varepsilon \oint \mathbf{E} \cdot d \mathbf{S}}{\int \mathbf{E} \cdot d \mathbf{I}}, W_{E}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{Q^{2}}{2 C}, C=\frac{Q}{V}=\frac{2 \pi \varepsilon L}{\ln \frac{b}{a}}, C=\frac{Q}{V}=\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}}, R C=\frac{\varepsilon}{\sigma}$

$$
\epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \quad, \mu_{o}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

## School of Engineering

BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

MAGNETOSTATICS:
$\mathbf{H}=\int_{L} \frac{I d \mathbf{I} \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\int_{S} \frac{\mathbf{K} d S \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\int_{v} \frac{\mathbf{J} d v \times \mathbf{a}_{R}}{4 \pi R^{2}}, \mathbf{H}=\frac{I}{4 \pi \rho}\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \mathbf{a}_{\phi}, \mathbf{H}=\frac{I}{2 \pi \rho} \mathbf{a}_{\phi}, \mathbf{a}_{\phi}=\mathbf{a}_{\ell} \times \mathbf{a}_{\rho}$,
$\oint \mathbf{H} \cdot d \mathbf{I}=I_{e n c}, \nabla \times \mathbf{H}=\mathbf{J}, \mathbf{H}=\frac{I}{2 \pi \rho} \mathbf{a}_{\phi}, \mathbf{H}=\frac{1}{2} \mathbf{K} \times \mathbf{a}_{n}, \mathbf{B}=\mu \mathbf{H}, \Psi=\int_{S} \mathbf{B} \cdot d \mathbf{S}, \oint \mathbf{B} \cdot d \mathbf{S}=0, \nabla \cdot \mathbf{B}=0, \mathbf{H}=-\nabla \mathrm{V}_{m}$,
$\mathbf{B}=\nabla \times \mathbf{A}, \mathbf{A}=\int_{L} \frac{\mu_{0} I d \mathbf{I}}{4 \pi R}, \mathbf{A}=\int_{S} \frac{\mu_{0} \mathbf{K} d S}{4 \pi R}, \mathbf{A}=\int_{v} \frac{\mu_{0} \mathbf{J} d v}{4 \pi R}, \Psi=\oint_{L} \mathbf{A} \cdot d \mathbf{I}, \mathbf{F}=Q(\mathbf{E}+\mathbf{u} \times \mathbf{B}), d \mathbf{F}=I d \mathbf{I} \times \mathbf{B}, \mathbf{B}_{1 n}=\mathbf{B}_{2 n}$,
$\left(\mathbf{H}_{1}-\mathbf{H}_{2}\right) \times \mathbf{a}_{n 12}=\mathbf{K}, \mathbf{H}_{1 t}=\mathbf{H}_{2 t}, \frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\mu_{1}}{\mu_{2}}, L=\frac{\lambda}{I}=\frac{N \psi}{I}, M_{12}=\frac{\lambda_{12}}{I_{2}}=\frac{N_{1} \psi_{12}}{I_{2}}, W_{m}=\frac{1}{2} \int \mathbf{B} \cdot \mathbf{H} d v=\frac{1}{2} \int \mu H^{2} d v$
WAVES AND APPLICATIONS:
$\mathrm{V}_{e m f}=-\frac{d \psi}{d t} \quad, \mathrm{~V}_{e m f}=\oint_{L} \mathbf{E} \cdot d \mathbf{I}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S} \quad, \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad, \mathrm{~V}_{e m f}=\oint_{L} \mathbf{E}_{m} \cdot d \mathbf{I}=\oint_{L}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{I}$
$\mathrm{~V}_{e m f}=\oint_{L} \mathbf{E} \cdot d \mathbf{I}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S}+\oint_{L}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{I} \quad, \mathbf{J}_{d}=\frac{\partial \mathbf{D}}{d t} \quad, \nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{d t} \quad, \beta=\frac{2 \pi}{\lambda}, \underline{\gamma}=\alpha+j \beta$
$\alpha=\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left[\frac{\sigma}{\omega \varepsilon}\right]^{2}}-1\right]}, \quad \beta=\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left[\frac{\sigma}{\omega \varepsilon}\right]^{2}}+1\right]}, \mathbf{E}(z, t)=E_{0} e^{-\alpha \varepsilon} \cos (\omega t-\beta z) \mathbf{a}_{x}$
$|\underline{\eta}|=\frac{\sqrt{\mu / \varepsilon}}{\left[1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}\right]^{1 / 4}}, \quad \tan 2 \theta_{\eta}=\frac{\sigma}{\omega \varepsilon}, \mathbf{H}=\frac{E_{0}}{|\underline{\eta}|} e^{-\alpha \varepsilon} \cos \left(\omega t-\beta_{z}-\theta_{\eta}\right) \mathbf{a}_{y}, \tan \theta=\frac{\sigma}{\omega \varepsilon}, \mathbf{a}_{E} \times \mathbf{a}_{H}=\mathbf{a}_{k}$
$\eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \approx 377 \Omega, p(t)=\mathbf{E} \times \mathbf{H}, p_{\text {ave }}(z)=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}^{*}{ }_{s}\right), p_{\text {ave }}(z)=\frac{E_{0}^{2}}{2|\underline{\eta}|} e^{-2 \alpha c} \cos \theta_{\eta} \mathbf{a}_{z}, P_{\text {ave }}=\int_{S} p_{\text {ave }} \cdot d \mathbf{S}$,
$\Gamma=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}, \tau=\frac{E_{\text {to }}}{E_{i o}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}, s=\frac{\left|\mathbf{E}_{1}\right|_{\max }}{\left|\mathbf{E}_{1}\right|_{\min }}=\frac{\left|\mathbf{H}_{1}\right|_{\max }}{\left|\mathbf{H}_{1}\right|_{\min }}=\frac{1+|\Gamma|}{1-|\Gamma|}, \quad k_{i} \sin \theta_{i}=k_{t} \sin \theta_{t}$,
$\Gamma_{\|}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}, \tau_{\|}=\frac{E_{\text {to }}}{E_{\text {io }}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}, \sin ^{2} \theta_{B \|}=\frac{1-\mu_{2} \varepsilon_{1} / \mu_{1} \varepsilon_{2}}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}}$,
$\Gamma_{\perp}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}, \tau_{\perp}=\frac{E_{\text {to }}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}, \sin ^{2} \theta_{B \perp}=\frac{1-\mu_{1} \varepsilon_{2} / \mu_{2} \varepsilon_{1}}{1-\left(\mu_{1} / \mu_{2}\right)^{2}}$
$\boldsymbol{\omega}=\boldsymbol{\beta} \mathbf{c}$
$S=\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}=\frac{1+|\Gamma|}{1-|\Gamma|}$
$\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$

$$
y(x, t)=A e^{-\alpha x} \cos \left(\omega t-\beta x+\phi_{0}\right)
$$

School of Engineering
BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

## Antenna and Radar formula

Dipole
Solid angle:

$$
\Omega_{\mathrm{p}}=\iint_{4 \pi} F(\theta, \phi) d \Omega
$$

Directivity:

$$
D=\frac{4 \pi}{\Omega_{\mathrm{p}}} \quad D=\frac{4 \pi A_{\mathrm{e}}}{\lambda^{2}}
$$

Shorted dipole

$$
S_{0}=\frac{15 \pi I_{0}^{2}}{R^{2}}\left(\frac{l}{\lambda}\right)^{2} \quad \begin{aligned}
& R_{\mathrm{rad}}=80 \pi^{2}\left[\frac{d l}{\lambda}\right]^{2} \\
& P_{\mathrm{rad}}=\frac{1}{2} I_{\mathrm{o}}^{2} R_{\mathrm{rad}}
\end{aligned}
$$

Half-wave dipole

$$
\begin{aligned}
& \widetilde{E}_{\theta}=j 60 I_{0}\left\{\frac{\cos [(\pi / 2) \cos \theta]}{\sin \theta}\right\}\left(\frac{e^{-j k R}}{R}\right), \\
& \widetilde{H}_{\phi}=\frac{\widetilde{E}_{\theta}}{\eta_{0}} . \\
& \left|E_{\phi s}\right|=\frac{\eta_{\mathrm{o}} I_{\mathrm{o}} \cos \left(\frac{\pi}{2} \cos \theta\right)}{2 \pi r \sin \theta} \\
& \left|H_{\phi s}\right|=\frac{I_{\mathrm{o}} \cos \left(\frac{\pi}{2} \cos \theta\right)}{2 \pi r \sin \theta}
\end{aligned}
$$

## School of Engineering

BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012

## For Transmission line

|  | Propagation Constant $\gamma=\alpha+j \beta$ | Phase Velocity $u_{\mathrm{p}}$ | Characteristic Impedance $Z_{0}$ |
| :---: | :---: | :---: | :---: |
| General case | $\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}$ | $u_{\mathrm{p}}=\omega / \beta$ | $Z_{0}=\sqrt{\frac{\left(R^{\prime}+j \omega L^{\prime}\right)}{\left(G^{\prime}+j \omega C^{\prime}\right)}}$ |
| Lossless $\left(R^{\prime}=G^{\prime}=0\right)$ | $\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$ | $u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$ | $Z_{0}=\sqrt{L^{\prime} / C^{\prime}}$ |
| Lossless coaxial | $\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$ | $u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$ | $Z_{0}=\left(60 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \ln (b / a)$ |
| Lossless two-wire | $\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathbf{r}}} / c$ | $u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$ | $\begin{aligned} Z_{0}= & \left(120 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \\ & \cdot \ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right] \\ Z_{0} \simeq & \left(120 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \ln (2 D / d), \\ & \text { if } D \gg d \end{aligned}$ |
| Lossless parallel-plate | $\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$ | $u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$ | $Z_{0}=\left(120 \pi / \sqrt{\varepsilon_{\mathrm{r}}}\right)(h / w)$ |

Notes: (1) $\mu=\mu_{0}, \varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}, c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and $\sqrt{\mu_{0} / \varepsilon_{0}} \simeq(120 \pi) \Omega$, where $\varepsilon_{\mathrm{r}}$ is the relative permittivity of insulating material. (2) For coaxial line, $a$ and $b$ are radii of inner and outer conductors. (3) For two-wire line, $d=$ wire diameter and $D=$ separation between wire centers. (4) For parallel-plate line, $w=$ width of plate and $h=$ separation between the plates.

## Distortionless line

$$
\begin{gathered}
\gamma=\sqrt{R G}+\mathrm{j} \omega \sqrt{L C} \\
\frac{R}{L}=\frac{G}{C}, \quad Z_{o}=\sqrt{\frac{L}{C}}
\end{gathered}
$$

## Open-circuited line

$$
\begin{aligned}
& \tilde{V}_{\mathrm{oc}}(d)=V_{0}^{+}\left[e^{j \beta d}+e^{-j \beta d}\right]=2 V_{0}^{+} \cos \beta d, \\
& \tilde{I}_{\mathrm{oc}}(d)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{j \beta d}-e^{-j \beta d}\right]=\frac{2 j V_{0}^{+}}{Z_{0}} \sin \beta d,
\end{aligned}
$$

$$
Z_{\mathrm{in}}^{\mathrm{oc}}=\frac{\tilde{V}_{\mathrm{oc}}(l)}{\tilde{I}_{\mathrm{oc}}(l)}=-j Z_{0} \cot \beta l .
$$

School of Engineering
BEng (Hons) Electrical and Electronics Engineering
Semester One Examination 2021/2022
Engineering Electromagnetism
Module Number: EEE6012
Short-circuited line

$$
\begin{aligned}
& \tilde{V}_{\mathrm{sc}}(d)=V_{0}^{+}\left[e^{j \beta d}-e^{-j \beta d}\right]=2 j V_{0}^{+} \sin \beta d, \\
& \tilde{I}_{\mathrm{sc}}(d)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{j \beta d}+e^{-j \beta d}\right]=\frac{2 V_{0}^{+}}{Z_{0}} \cos \beta d, \\
& Z_{\mathrm{sc}}(d)=\frac{\widetilde{V}_{\mathrm{sc}}(d)}{\widetilde{I}_{\mathrm{sc}}(d)}=j Z_{0} \tan \beta d . \\
& j \omega L_{\mathrm{eq}}=j Z_{0} \tan \beta l, \quad \text { if } \tan \beta l \geq 0 \\
& \frac{1}{j \omega C_{\mathrm{eq}}}=j Z_{0} \tan \beta l, \quad \text { if } \tan \beta l \leq 0 \\
& Z_{\text {in }}=Z_{\mathrm{o}}\left[\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{\mathrm{o}}+j Z_{L} \tan \beta \ell}\right] \\
& Z_{\mathrm{in}}=Z_{\mathrm{o}}\left[\frac{Z_{L}+Z_{\mathrm{o}} \tanh \gamma \ell}{Z_{\mathrm{o}}+Z_{L} \tanh \gamma \ell}\right]
\end{aligned}
$$

$V_{\mathrm{o}}=\frac{Z_{\text {in }}}{Z_{\text {in }}+Z_{g}} V_{g} \quad I_{\mathrm{o}}=\frac{V_{g}}{Z_{\text {in }}+Z_{g}}$
$V_{o}=V_{t} e^{j \beta t}$
For a bistatic radar (one in which the transmitting and receiving antennas are separated), the power received is given by

$$
P_{r}=\frac{G_{d t} G_{d r}}{4 \pi}\left[\frac{\lambda}{4 \pi r_{1} r_{2}}\right]^{2} \sigma P_{\mathrm{rad}}
$$

For a monostatic radar, $r_{1}=r_{2}=r$ and $G_{d t}=G_{d r}$.

$$
P_{\mathrm{rec}}=P_{\mathrm{t}} G_{\mathrm{t}} G_{\mathrm{r}}\left(\frac{\lambda}{4 \pi R}\right)^{2}
$$

