UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG(HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

TRIMESTER ONE EXAMINATION 2021/2022

ENGINEERING ELECTROMAGNETISM

MODULE NO: EEE6012

Date: Thursday $13^{\text {th }}$ January 2022
Time: 10:00-12:30

INSTRUCTIONS TO CANDIDATES:
There are FIVE questions.
Answer any ANY FOUR questions.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Formula sheets are included in the paper

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012
Q1
a) Given point $P(-2,6,3)$ and vector $\mathrm{A}=y \mathrm{a}_{\mathrm{x}}+(x+z) \mathrm{a}_{y}$:
(i) Express P and \mathbf{A} in cylindrical and spherical coordinates.
(4 marks)
(ii) Evaluate \mathbf{A} at P in the Cartesian, cylindrical, and spherical systems.
(5 marks)
Two point charges 4 nC and -3 nC are located at (1, 0, 4) and ($-3,0,2$), respectively.
(i) Determine the force on a 1 nC point charge located at (1, 2, -6).
(ii) Find the electric field E at (1, 2, -6).
b) A point charge of 30 nC is located at the origin, while plane $y=3$ carries charge $10 \mathrm{nC} / \mathrm{m}^{2}$. Find D at $(0,4,3)$ and at $(1,3,2)$.
(8 marks)
Total 25 marks

PLEASE TURN THE PAGE.....

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012

Q2

a) Find H at $(-3,4,0)$ due to the current filament shown in Figure 1.

(10 marks)

Figure 1

Q2 continues over the page....
PLEASE TURN THE PAGE.....

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012

Q2 continued...

b) The solenoid shown in Figure 2 has 2000 turns, a length of 75 cm , and a radius of 5 cm . If it carries a current of 50 mA along at a_{φ}, find \mathbf{H} at
i) $(0,0,0)$
ii) $(0,0,75 \mathrm{~cm})$
(2 marks)
iii) $(0,0,50 \mathrm{~cm})$

Figure 2
c) A circular loop located on $x^{2}+y^{2}=9, z=0$ carries a direct current of 10 A along a_{ϕ}. Determine magnetic field intensity H at $(0,0,4)$ and $(0,0,-4)$.

Total 25 marks

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012
Q3.
a) The electric field (E) and magnetic field (H) in free space are given by the following expressions

$$
E=\frac{50}{\rho} \cos \left(10^{6} t+\beta z\right) a_{\phi} V / m \quad H=\frac{H_{0}}{\rho} \cos \left(10^{6} t+\beta z\right) a_{\rho} A / m
$$

By expressing them in phasor form, determine and analyse
i) Value of constant β such that the fields satsify Maxwell's equations.
(5 marks)
ii) Value of constant H_{0} in the given field H to satisfy Maxwell's equations
b) In a medium characterized by $\sigma=0, \mu=\mu_{0, \varepsilon}=4 \varepsilon$, and $E=20 \sin \left(10^{8} t-\beta z\right) a_{y} V / m$ Calculate β and \mathbf{H}.
(10 marks)
c) Given that $A=10 \cos \left(10^{8} t-10 x+60^{\circ}\right) a_{z}$ and $B_{s}=(20 / j) a_{x}+10 e^{j 2 \pi x / 3} a_{y}$, express A in phasor for, and Bs in instantaneous form.
(5 marks)
Total 25 marks

PLEASE TURN THE PAGE.....

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012
Q4.
a) An electric field in free space, $\mathbf{E}=50 \cos \left(10^{8} t+\beta x\right) \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$
(i) Find the direction of wave propagation.
(1 mark)
(ii) Calculate β and the time it takes to travel a distance of $\lambda / 2$.
(3 marks)
(iii) Sketch the wave at time $t=0, \mathrm{~T} / 4 / \mathrm{T} / 2$.
(6 marks)
b) In free space $\mathbf{H}=0.2 \cos (\omega t-\beta x) a_{z} A / m$. Find the total power passing through:
(i) A square plate of side 0.1 m on plane $\mathrm{x}+\mathrm{y}=1$
(ii) A circular disk of radius 0.05 m on plane $\mathrm{x}=1$.
(2 marks)
c) A certain transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8 \mathrm{~dB} / \mathrm{m}$, $\beta=1 \mathrm{rad} / \mathrm{m}$, and $Z_{0}=60+j 40 \Omega$. If the line is connected to a source of $10 \mathrm{~L} 0^{0}$ $\mathrm{V}, \mathrm{Z}_{\mathrm{g}}=40 \Omega$ and terminated by a load of $20+\mathrm{j} 50 \Omega$.

Determine

(i) The input impedance
(ii) The sending-end current
(iii) The current at the middle of the line

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012
Q5.
a) Assume that a rectangular waveguide is operating in an isotropic, homogeneous dielectric with negligible magnetic properties in-TM ${ }_{13}$ mode for which $\mathrm{a}=0.015 \mathrm{~m}, \mathrm{~b}=0.008 \mathrm{~m}, \sigma=0, \mu=\mu_{0}$ and $\varepsilon=4 \varepsilon_{0}, \mathrm{H}_{\mathrm{x}}=2$ $\operatorname{Sin}(\pi x / a) \operatorname{Cos}(3 \pi y / b) \operatorname{Sin}\left(10^{11} \pi t-\beta z\right) A / m$. Determine
(i) Cut off frequency and phase constant, β
(6 marks)
(ii) Propagation constant γ and intrinsic wave impedance η
b) A standard air-filled rectangular waveguide with dimensions $a=8.636 \mathrm{~cm}, b=$ 4.318 cm is fed by a 4 GHz carrier from a coaxial cable. Determine whether a TE10 mode will be propagated. If so, calculate the phase velocity and the group velocity.
(5 marks)
(c) A brass waveguide ($\sigma c=1.1 \times 10^{7} \mathrm{~S} / \mathrm{m}$) of dimensions $\mathrm{a}=0.042 \mathrm{~m}, \mathrm{~b}=0.015$ m is filled with Teflon ($\varepsilon r=2.6, \sigma=10^{-15} \mathrm{~S} / \mathrm{m}$). The operating frequency is 9 GHz. For the TE10 mode:
(i) Calculate α_{d} and α_{c}
(5 marks)
(ii) Find the loss in decibels in the guide if it is 0.40 m long.
(5 marks)
Total 25 marks

END OF QUESTIONS

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012

EQUATION SHEET

Constants: $\varepsilon_{0}=8.852^{*} 10^{-12} \mathrm{~F} / \mathrm{m}, \mu_{0}=4 \pi * 10^{-7} \mathrm{H} / \mathrm{m}$

Co-ordinate systems:

$r=\sqrt{ }\left(\rho 2+z^{2}\right)$
$\theta=\tan ^{-1}(\rho / z)$
$\operatorname{Sin} \theta=\rho / \sqrt{ }\left(\rho 2+z^{2}\right)$
$\operatorname{Cos} \theta=z / \sqrt{ }\left(\rho 2+z^{2}\right)$

Capacitors:

$$
\begin{aligned}
& \mathrm{C}_{1}=\alpha \varepsilon_{0} \varepsilon_{\mathrm{r} 1} / / 2.303 \log _{10}\left(\mathrm{r} / \mathrm{r}_{1}\right) \\
& \mathrm{C}_{2}=\alpha \varepsilon_{0} \varepsilon_{\mathrm{r} 2} / 2.303 \log _{10}(\mathrm{r} / \mathrm{r}) \\
& \mathrm{V}_{1}=\mathrm{VC}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& \mathrm{V}_{2}=\mathrm{VC}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
A_{\rho} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]
$$

Electrostatics:

$C=\frac{\mathcal{E}_{0} \varepsilon_{r} A}{d}$
$C_{T}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$Q=C V$

$$
\begin{aligned}
Q & =\oint_{S} \mathbf{D} \cdot d \mathbf{S}=\int_{y} \rho_{v} d v \\
\overrightarrow{\mathbf{F}} & =\frac{Q}{4 \pi \varepsilon_{\mathrm{o}}} \sum_{k=1}^{N} \frac{Q_{k}\left(\mathbf{r}-\mathbf{r}_{k}\right)}{\left|\mathbf{r}-\mathbf{r}_{k}\right|^{3}}
\end{aligned}
$$

$D=\frac{Q}{A}$
$E=\frac{D}{\in_{0} \epsilon_{r}}$

$$
\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}}
$$

$Q=\int_{S} \rho_{S} d S$
$V(\mathbf{r})=\frac{\mathbf{p} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}$
$V=E \times d$

$$
\begin{aligned}
& V(\mathbf{r})=\frac{Q}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& W=-Q \int_{L} \mathbf{E} \cdot d \mathbf{l}
\end{aligned}
$$

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering
Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012

Magnetostatics:

$\mathbf{H}=\frac{I}{4 \pi \rho}\left(\cos \alpha_{2}-\cos \alpha_{1}\right) \mathbf{a}_{\phi}$
Ampere circuital law :

$$
d \mathbf{H}=\frac{I d \mathbf{l} \times \mathbf{a}_{R}}{4 \pi R^{2}}
$$

$L=\frac{\lambda}{I}=\frac{N \Psi}{I}$

$$
\begin{gathered}
\mathrm{B}_{1}=\mu \mathrm{I} \rho / 2 \pi \mathrm{a}^{2}(\text { for } 0<=\rho<=\mathrm{a}) \\
\mathrm{B}_{2}=\mu \mathrm{I} / 2 \pi \rho(\text { for } \mathrm{a}<=\rho<=\mathrm{b})
\end{gathered}
$$

Maxwell's Equations

$$
\nabla . E_{s}=0
$$

$$
\nabla . H_{s}=0
$$

$$
\nabla \times \mathrm{H}_{\mathrm{s}}=\mathrm{j} \omega \varepsilon_{0} \mathrm{E}_{\mathrm{s}}
$$

$$
\nabla x \mathrm{E}_{\mathrm{s}}=-\mathrm{j} \omega \mu_{0} \mathrm{H}_{\mathrm{s}}
$$

EM wave propagation and Transmission lines
$\varepsilon_{\mathrm{r}}=\beta^{2} /\left(\omega^{2} \mu_{0} \mu_{\mathrm{r}} \varepsilon_{0}\right)$
$\eta=\sqrt{ }(\mu / \varepsilon)$
Pavg $=\mathrm{E} \times \mathrm{H}$
$P_{\text {total }}=\int P_{\text {avg }} d S$
$\gamma=\alpha+j \beta$
$Z_{\text {in }}=Z_{\mathrm{o}}\left(\frac{Z_{L}+Z_{\mathrm{o}} \tanh \gamma \ell}{Z_{\mathrm{o}}+Z_{L} \tanh \gamma \ell}\right)$
$I(z=0)=\frac{V_{g}}{Z_{\text {in }}+Z_{g}}$

H

$$
=\left\{\begin{array}{c}
\frac{I \rho}{2 \pi a^{2}} \mathbf{a}_{\phi}, \quad 0 \leq \rho \leq a \\
\frac{I}{2 \pi \rho} \mathbf{a}_{\phi}, \quad a \leq \rho \leq b \\
\frac{I}{2 \pi \rho}\left[1-\frac{\rho^{2}-b^{2}}{t^{2}+2 b t}\right] \mathbf{a}_{\phi>} \quad b \leq \rho \leq b+t \\
0, \quad \rho \geq b+t
\end{array}\right.
$$

$$
\mathbf{a}_{\phi}=\mathbf{a}_{\ell} \times \mathbf{a}_{\rho}
$$

$$
\omega / \beta=C / \sqrt{ }\left(\mu_{r} \varepsilon_{r}\right)
$$

$\mathrm{E}_{0} / \mathrm{H}_{0}=\sqrt{ }\left(\mu_{0} \mu_{\mathrm{r}} / \varepsilon_{0} \varepsilon_{\mathrm{r}}\right)$

$$
\text { charge density, } \rho=\nabla \cdot \mathbf{D}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \mathbf{D}_{r}\right)+\frac{1}{r} \frac{\partial \mathbf{D}_{\theta}}{\partial \theta}+\frac{\partial \mathbf{D}_{z}}{\partial z} \text {. }
$$

$$
\begin{aligned}
& V_{\mathrm{o}}=Z_{\mathrm{in}} I_{\mathrm{o}} \\
& V_{\mathrm{o}}^{+}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{o}}+Z_{\mathrm{o}} I_{\mathrm{o}}\right) \\
& V_{\mathrm{o}}^{-}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{o}}-Z_{\mathrm{o}} I_{\mathrm{o}}\right) \\
& I_{\mathrm{o}}(z=\ell / 2)=\frac{V_{\mathrm{o}}^{+}}{Z_{\mathrm{o}}} e^{-\gamma z}-\frac{V_{\mathrm{o}}^{-}}{Z_{\mathrm{o}}} e^{\gamma z} \\
& \text { phase velocity, } v=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \varepsilon}} \\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}
\end{aligned}
$$

Off Campus Division
Western International College
BEng (Hons) Electrical \& Electronic Engineering Trimester 1 Examination 2021/22
Engineering Electromagnetism
Module No. EEE6012

Waveguides and Optical Fibres:

$$
\begin{aligned}
& f_{c_{\mathrm{mn}}}=\frac{u^{\prime}}{2} \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} \\
& u^{\prime}=\frac{1}{\sqrt{\mu \varepsilon}} \\
& \beta=\omega \sqrt{\mu \varepsilon} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}} \\
& \gamma=j \beta \\
& \eta_{\mathrm{TM}_{\mathrm{mn}}}=\eta^{\prime} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}
\end{aligned}
$$

For the TE_{10} mode

$$
\alpha_{d}=\frac{\sigma \eta^{\prime}}{2 \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}}
$$

$$
f_{c}=\frac{u^{\prime}}{2 a}
$$

$$
\eta^{\prime}=\sqrt{\frac{\mu}{\varepsilon}}
$$

$$
R_{s}=\frac{1}{\sigma_{c} \delta}=\sqrt{\frac{\pi f \mu}{\sigma_{c}}}
$$

For the TE_{10} mode

$$
\begin{aligned}
\alpha_{c} & =\frac{2 R_{s}}{b \eta^{\prime} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}}\left(0.5+\frac{b}{a}\left[\frac{f_{c}}{f}\right]^{2}\right) \\
\alpha & =\alpha_{d}+\alpha_{c} \\
P_{a} & =\left(P_{d}+P_{a}\right) e^{-2 \alpha z}
\end{aligned}
$$

Numerical aperture, NA $=\operatorname{Sin} \theta_{a}=\sqrt{ }\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)$
$V=\pi d V\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right) / \lambda$
No: of modes, $\mathrm{N}=\mathrm{V}^{2} / 2$

$$
\mathrm{a} \ell=10 \log _{10}[\mathrm{P}(0) / \mathrm{P}(\ell)]
$$

$T=2 \pi / \omega$
$\lambda=\mathrm{Nt}$
$\beta=2 \pi / \lambda$

