UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) ELECTRICAL \& ELECTRONIC ENGINEERING

SEMESTER 1 EXAMINATIONS 2021/22

INTRODUCTORY ENGINEERING MATHEMATICS

MODULE NO: EEE4011

Date: Friday 14th January 2022
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:

This assessment contributes 40\% towards your final module mark.
Please attempt FOUR of the six questions.
For your guidance, the maximum mark that may be achieved for each question and part question is shown in brackets.

A formula sheet is provided on page 7.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2021/22
Introductory Engineering Mathematics
EEE4011

Question 1

(a) Consider the 3-dimensional vectors $u=\left(\begin{array}{c}5 \\ 3 \\ -2\end{array}\right)$ and $v=\left(\begin{array}{c}8 \\ -4 \\ 7\end{array}\right)$

Calculate the following: (i) $3 u+2 v$ (2 marks)
(ii) u.v
(1 mark)
(iii) $|u|$
(1 mark)
(iv) $|v|$
(1 mark)
(v) the angle between u and v
(2 marks)
(b) Let A and B be the following matrices:

$$
A=\left(\begin{array}{ccc}
4 & -1 & 5 \\
3 & 2 & 0 \\
8 & 7 & 6
\end{array}\right) \quad B \Rightarrow\left(\begin{array}{ccc}
3 & 8 & 2 \\
6 & 1 & -4 \\
7 & 0 & 5
\end{array}\right)
$$

Calculate the following matrices:

(c) Write the following system of simultaneous linear equations as an equation of matrices:

$$
\begin{aligned}
& 9 x+7 y=55 \\
& 8 x+5 y=66
\end{aligned}
$$

By finding the inverse of the square matrix, solve the system of equations.
(6 marks)

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2021/22
Introductory Engineering Mathematics
EEE4011

Question 2

(a) Find the complex solutions of the following quadratic equation:

$$
x^{2}-14 x+74=0
$$

Plot the solutions on a sketch of the Argand diagram.
(b) Let $z_{1}=8+3 j$ and $z_{2}=2-4 j$ be complex numbers. Calculate the following:
(i) $3 z_{1}-4 z_{2}$
(ii) $z_{1} \overline{z_{1}}$
(2 marks)
(iii) $z_{1} z_{2}$
(2 marks)
(iv) $\frac{z_{1}}{z_{2}}$.
(c) Let $z_{1}=100 \angle 50^{\circ}$ and $z_{2}=20 \angle 10^{\circ}$ be complex numbers in polar form. Calculate the following conplex numbers in polar form:
(i) $<z_{1} z_{2}$
(2 marks)
(ii) $\frac{z_{1}}{z_{2}}$
(2 marks)
(iii) z_{2}^{3}
(2 marks)
(iv) $\sqrt{z_{1}}$
(3 marks)

PLEASE TURN THE PAGE

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2021/22
Introductory Engineering Mathematics
EEE4011

Question 3

(a) Differentiate each of the following functions to find $\frac{d y}{d t}$:
(i) $y=3 t^{4}+5 t^{3}-2 t^{2}+7$
(ii) $y=t^{3} \sin 4 t$
(iii) $y=\sin \left(t^{2}+3\right)$ (4 marks)
(iv) $y=\frac{t^{2}+3 t+2}{e^{4 t}}$
(b) Find the turning points of the following function:

$$
y=t^{3}-9 t^{2}-48 t+25
$$

Determine whether each turning point is a local naximum or a local minimum.

Question 4

(a) Evaluate each of the following definite integrals:

(b) Find each of the following indefinite integrals
(i) $\quad \int t^{2} \cos 5 t d x$
(7 marks)
(ii) $\quad \int t^{2}\left(t^{3}+7\right)^{9} d x$

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2021/22
Introductory Engineering Mathematics
EEE4011

Question 5

(a) Solve the following differential equation by separating variables:

$$
\frac{d y}{d t}=\frac{6 t+5}{4 y-3}
$$

The boundary condition is $y=2$ when $t=0$.
(b) Consider the following linear differential equation:

$$
\frac{d y}{d t}+5 y=10 t
$$

(i) Find the particular integral.
(ii) Find the complementary function.
(iii) Hence find the solution given that when $t=0$ we have $y=1$. (2 marks)
(c) Find the general solution of the following second order linear differential equation:

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}-28 y=0
$$

PLEASE TURN THE PAGE

Question 6

(a) The ages in years of ten employees are as follows:

64	25	44	52	36
30	31	39	21	38

Find the median age and calculate the mean age.
Calculate the standard deviation of the ages.
(b) Operational amplifiers ("op amps") are being manufactured. It is known that 3% of these fail quality control testing, sothat the probability that a single op amp fails is 0.03 .
Calculate to three decimal places the probability that in a batch of six of these op amps:
(i) none fail
(ii) exactly one fails
(iii) exactly two fail
(c) Customers arrive at a helpdesk at a mean rate of one customer every 6 minutes. Find the expected number of customers that will arrive in one hour. (2 marks) Calculate to foudecimal palces the probability that in one hour
(i) exactly nine customers arrive (2 marks)
(ii) exactly eleven customers arrive
(iii) two or more customers arrive

END OF QUESTIONS

FORMULA SHEET OVER THE PAGE

Formulae

Derivatives and Integrals:

Integral	Function	Derivative
$\int y d t$	y	$\frac{d y}{d t}$
t	1	0
$\frac{1}{n+1} t^{n+1}$	t^{n}	$n t^{n-1}$
$-\frac{1}{a} \cos a t$	$\sin a t$	$a \cos a t$
$\frac{1}{a} \sin a t$	$\cos a t$	$a \sin a t$
$\frac{1}{a} e^{a t}$	$e^{a t}$	$a e^{a t}$

Integration by Parts:

Binomial Distribution:

$$
\oint u \frac{d v}{d t} d t=u v-\int v \frac{d u}{d t} d t
$$

The probability or successes in n trials is

$$
\binom{n}{r} p^{r} q^{n-r}
$$

where p is the probability of success in a single trial and $p+q=1$.

Poisson Distribution:

The probability of r successes is

$$
\frac{m^{r}}{r!} e^{-m}
$$

where m is the expected number of successes.

> END OF PAPER

