ENG24

## **UNIVERSITY OF BOLTON**

## SCHOOL OF ENGINEERING

### BEng (Hons) ELECTRICAL & ELECTRONIC ENGINEERING

### **SEMESTER 1 EXAMINATIONS 2021/22**

## **INTRODUCTORY ENGINEERING MATHEMATICS**

# MODULE NO: EEE4011

Date: Friday 14th January 2022

Time: 10:00 - 12:00

### **INSTRUCTIONS TO CANDIDATES:**

This assessment contributes 40% towards your final module mark.

Please attempt **FOUR** of the six questions.

For your guidance, the maximum mark that may be achieved for each question and part question is shown in brackets.

A formula sheet is provided on page 7.

#### **Question 1**

(a) Consider the 3-dimensional vectors 
$$u = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}$$
 and  $v = \begin{pmatrix} 8 \\ -4 \\ 7 \end{pmatrix}$   
Calculate the following: (i)  $3u + 2v$  (2 marks)  
(ii)  $u.v$  (1 mark)  
(iii)  $|u|$  (1 mark)  
(iv)  $|v|$  (1 mark)  
(v) the angle between  $u$  and  $v$  (2 marks)  
(b) Let  $A$  and  $B$  be the following matrices:  
 $A = \begin{pmatrix} 4 -1 & 5 \\ 3 & 2 & 0 \\ 8 & 7 & 6 \end{pmatrix}$   
Calculate the following matrices:  
 $AB$  (5 marks)  
(c) Write the following system of cimultaneous linear equations as an equation of

(c) Write the following system of simultaneous linear equations as an equation of matrices:

$$9x + 7y = 55$$
$$8x + 5y = 66$$

(2 marks)

By finding the inverse of the square matrix, solve the system of equations.

(6 marks)

#### **Question 2**

(a) Find the complex solutions of the following quadratic equation:

$$x^2 - 14x + 74 = 0.$$

(5 marks)

Plot the solutions on a sketch of the Argand diagram. (2 marks)

Let  $z_1 = 8 + 3j$  and  $z_2 = 2 - 4j$  be complex numbers. Calculate the (b) following:

ATIONPAR  $3z_1 - 4z_2$ (i) (2 marks) (ii)  $z_1\overline{z_1}$ (2 marks) (iii)  $z_1 z_2$ (2 marks)  $\frac{Z_1}{Z_2}$ . (iv) (3 marks)

10° be complex numbers in polar form. Let  $z_1 = 100 \angle 50^\circ$  and  $z_2 \in$ (c) 20 Calculate the following complex numbers in polar form:

(2 marks)  $Z_1Z_2$  $\frac{z_1}{z_2}$  $z_2^3$ (2 marks) (2 marks) (iv) (3 marks)  $\sqrt{Z_1}$ 

#### **Question 3**

- (a) Differentiate each of the following functions to find  $\frac{dy}{dt}$ :
  - (i)  $y = 3t^4 + 5t^3 2t^2 + 7$  (3 marks)
  - (ii)  $y = t^3 \sin 4t$  (4 marks)
  - (iii)  $y = \sin(t^2 + 3)$  (4 marks)
  - (iv)  $y = \frac{t^2 + 3t + 2}{e^{4t}}$

(4 marks)

(b) Find the turning points of the following function:

$$y = t^3 - 9t^2 - 48t + 25.$$

Determine whether each turning point is a local maximum or a local minimum.

(10 marks)

#### **Question 4**

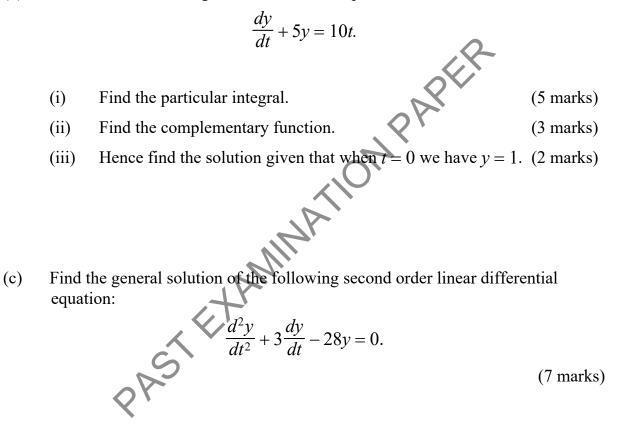
- (a) Evaluate each of the following definite integrals:
  - (i)  $\int_{2}^{3} (9t^{2} + 8t 3)dt$  (6 marks) (ii)  $\int_{0}^{\frac{\pi}{2}} (8\cos 2t + 12\sin 4t)dt$

(6 marks)

- (b) Find each of the following indefinite integrals
  - (i)  $\int t^2 \cos 5t dx$  (7 marks) (ii)  $\int t^2 (t^3 + 7)^9 dx$

(6 marks)

#### **Question 5**


(a) Solve the following differential equation by separating variables:

$$\frac{dy}{dt} = \frac{6t+5}{4y-3}$$

The boundary condition is y = 2 when t = 0.

(8 marks)

(b) Consider the following linear differential equation:



#### **Question 6**

The ages in years of ten employees are as follows: (a)

| 64 | 25 | 44 | 52 | 36 |
|----|----|----|----|----|
| 30 | 31 | 39 | 21 | 38 |

| Find the median age and calculate the mean age. | (4 marks) |
|-------------------------------------------------|-----------|
| Calculate the standard deviation of the ages.   | (4 marks) |

Operational amplifiers ("op amps") are being manufactured. (b)

It is known that 3% of these fail quality control testing, so that the probability that a single op amp fails is 0.03.

Calculate to three decimal places the probability that in a batch of six of these op amps:

- MINATION (i) none fail (3 marks) (ii) exactly one fails (3 marks)
- exactly two fail (3 marks) (iii)

Customers arrive at a helpdesk at a mean rate of one customer every 6 minutes. (c) Find the expected number of customers that will arrive in one hour. (2 marks) Calculate to four decimal palces the probability that in one hour

- (i) exactly nine customers arrive (2 marks)
- (ii) exactly eleven customers arrive (2 marks)
- (iii) two or more customers arrive (2 marks)

### **END OF QUESTIONS**

#### FORMULA SHEET OVER THE PAGE

#### Page 7 of 7

School of Engineering BEng (Hons) Electrical and Electronic Engineering Semester 1 Examinations 2021/22 Introductory Engineering Mathematics EEE4011

### **Formulae**

#### **Derivatives and Integrals:**

|                                                                                   | Integral               | Function | Derivative       |  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------|----------|------------------|--|--|--|--|--|
|                                                                                   | ∫ ydt                  | у        | $\frac{dy}{dt}$  |  |  |  |  |  |
|                                                                                   | t                      | 1        | 0                |  |  |  |  |  |
|                                                                                   | $\frac{1}{n+1}t^{n+1}$ | $t^n$    | $nt^{n-1}$       |  |  |  |  |  |
|                                                                                   | $-\frac{1}{a}\cos at$  | sin at   | a cos at         |  |  |  |  |  |
|                                                                                   | $\frac{1}{a}\sin at$   | cos at   | Ga sin at        |  |  |  |  |  |
|                                                                                   | $\frac{1}{a}e^{at}$    | eat      | ae <sup>at</sup> |  |  |  |  |  |
| Integration by Parts:<br>$\int u \frac{dv}{dt} dt = uv - \int v \frac{du}{dt} dt$ |                        |          |                  |  |  |  |  |  |
| <b>Binomial Distribution:</b>                                                     |                        |          |                  |  |  |  |  |  |

#### **Binomial Dis**

The probability of r successes in n trials is

 $\binom{n}{r}p^{r}q^{n-r}$ 

where p is the probability of success in a single trial and p + q = 1.

#### **Poisson Distribution:**

The probability of r successes is

$$\frac{m^r}{r!}e^{-m}$$

where m is the expected number of successes.

END OF PAPER