# **UNIVERSITY OF BOLTON**

# SCHOOL OF ENGINEERING

## **BENG (HONS) CIVIL ENGINEERING**

## **SEMESTER 1 EXAM 2021/2022**

# **MATHEMATICAL METHODS FOR CIVIL ENGINEERING**

# MODULE NO: CIE4022

Date: Monday 17<sup>th</sup> January 2022

Time: 10:00 - 13:00

**INSTRUCTIONS TO CANDIDATES:** 

This is an OPEN book examination

There are <u>FOUR</u> questions

Answer <u>ALL</u> Questions

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of

100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

CANDIDATES REQUIRE:

Formula Sheets (attached following questions).

### **Question 1**

(a) Differentiate the following

(i)  $y = 3x^3 + 7x - \frac{2}{x^2}$  (3 marks) (ii)  $y = \sqrt[3]{x^7} - \frac{1}{\sqrt[3]{x^7}}$  (4 marks) (iii)  $y = (3x^2 + 7)^{11}$  (4 marks) (iv)  $y = \ln(6x^3 + 2x - 3)$  (4 marks) (v)  $y = 5\sin(3x)\cos(4x)$  (5 marks) (vi)  $y = \frac{e^{5x}}{7x-2}$  (5 marks) Total Marks 25 Marks

#### **Question 2**

- (a) (i) Sketch the graph y = (x + 7)(x + 1)(x 3) indicating where it crosses the x axis.
  - (ii) Determine the gradient function of the equation from part (a)

(6 marks)

- (iii) Find the gradient where x = 1
- (iv) Find the x co-ordinates where  $\frac{dy}{dx} = 8$ . (6 marks)
- (v) Find the x co-ordinates of the stationary points to two decimal places.
- (vi) indicate, with justification, whether each stationary point is a local maxima or local minimum.

(6 marks)

(b) If  $h = 7e^{3r^2}$ 

Show that:  $\frac{d^2h}{dr^2} = 42e^{3r^2}(1+6r^2)$ 

(7 marks)

**Total Marks 25 Marks** 

PLEASE TURN THE PAGE....

### **Question 3**

(a) Integrate each of the following

| (i)   | $\int 3x^3 + 7x - \frac{2}{x^2} dx$                      | (           | 3 marks) |
|-------|----------------------------------------------------------|-------------|----------|
| (ii)  | $\int \frac{8}{\sqrt[3]{x^7}} dx$                        |             | 3 marks) |
| (iii) | $\int 2x\cos(x^2)dx$                                     |             | 4 marks) |
| (iv)  | $\int \frac{60x^3 + 18x - 21}{5x^4 + 3x^2 - 7x + 9}  dx$ |             | 5 marks) |
| (v)   | $\int 2x \cos(7x) dx$                                    |             | 5 marks) |
| (vi)  | $\int 7x^2 \ln(x) \ dx$                                  |             | 5 marks) |
|       | K CHA                                                    | Total Marks | 25 Marks |
|       | S                                                        |             |          |
| X     |                                                          |             |          |

PLEASE TURN THE PAGE....

#### **Question 4**

(b)

(c)

(d)

(a) The curve below is represented by the equation  $y = 3 + 4x - x^2$ . Find the area of the shaded region.



(5 marks)

Total Marks 25 Marks

### **END OF QUESTIONS**

FORMULA SHEET FOLLOWS OVER THE PAGE....

#### PLEASE TURN THE PAGE....

| Function<br>f(x) or y | Differentiation<br>f'(x) or $\frac{dy}{dx}$ |  |
|-----------------------|---------------------------------------------|--|
| x <sup>n</sup>        | nx <sup>n-1</sup>                           |  |
| e <sup>x</sup>        | e <sup>x</sup>                              |  |
| e <sup>ax</sup>       | ae <sup>ax</sup>                            |  |
| ln (x)                | $\frac{1}{x}$                               |  |
| sin (x)               | cos (x)                                     |  |
| sin (ax)              | a cos (ax)                                  |  |
| cos (ax)              | -a sin (ax)                                 |  |

### FORMULA SHEET

|                    | <u>Chain rule</u>                                                                                         | Product rule                                                                                                              | Quotient rule                                                                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| tiation            | y = f(g(x)) $u = g(x)$                                                                                    | y = u v                                                                                                                   | $y = \frac{u}{v}$                                                                                                   |
| Differen           | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$ | $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{u}\frac{\mathrm{d}v}{\mathrm{d}x} + \mathrm{v}\frac{\mathrm{d}u}{\mathrm{d}x}$ | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$ |
|                    | <u>By parts</u>                                                                                           |                                                                                                                           |                                                                                                                     |
| <u>Integration</u> | $y = u \frac{dv}{dx}$ $\int u \frac{dv}{dx} = uv - \int v \frac{du}{dx}$                                  |                                                                                                                           |                                                                                                                     |