UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG(HONS) CIVIL ENGINEERING

TRIMESTER ONE EXAMINATION 2021/2022

MATHEMATICAL METHODS FOR CIVIL
 ENGINEERING

MODULE CIE4022

Date: Tuesday $11^{\text {th }}$ January 2022
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:
There are SIX questions on this paper.
Answer ANY FIVE questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet $/$ supplementary information is provided at the end of question paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

University of Bolton
Western International College
BEng (Hons) Civil Engineering
Trimester 1 Examination 2021/2022
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q1
a) The deflection of a simply supported beam with a point load in mid-span is given by:

$$
y=\frac{P L^{3}}{48 E I}
$$

i. Rearrange the equation by transposition to find an expression for L.
(2 marks)
ii. If the deflection of the beam (y) is limited to 10 mm , the magnitude of the uniformly varying load (P) is 200 kN , the elastic modulus (E) is 210 $\mathrm{kN} / \mathrm{mm}^{2}$, and the second moment of area (I) is $2356 \mathrm{~cm}^{4}$, what is the length of the beam (L) in (m) ?
(6 marks)
b) According to the effective area approach used for column base design, Aeff is given by the equation:

$$
A_{e f f}=4 c^{2}+2(h+b) c+h b
$$

If Effective area $\left(\mathrm{A}_{\text {eff }}\right)=369000 \mathrm{~mm}^{2}$, the depth of column $(\mathrm{h})=365.3 \mathrm{~mm}$ the and the width of column(b) $=322.2 \mathrm{~mm}$,
(i) Formulate the final equation for $\mathrm{A}_{\text {eff }}$ for the given conditions
(ii) Estimate the Projection width ' c ' in $m m$ using 'quadratic formula'
(4 marks)
Q1 continues over the page...

PLEASE TURN THE PAGE.....

University of Bolton
Western International College
BEng (Hons) Civil Engineering
Trimester 1 Examination 2021/2022
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q1 continued....
c) Write down and simplify the first four terms of the binomial expansion for:

$$
(3+x)^{1 / 2}
$$

Total 20 marks

Q2
a) Using logarithms, solve the following simultaneous equations:

$$
\begin{gathered}
2^{(x+y)}=32 \\
x-y=3
\end{gathered}
$$

b) Expand the log expression

$$
\log _{10}\left(\sqrt[3]{\frac{m}{5 y k}}\right)
$$

c) Water flows through a 225 mm diameter pipeline. The pipeline has surface roughness coefficient 'Ks' of 0.9 mm . Using Barr's equation, determine the value for the Darcy friction factor, λ if Reynold's number is given as 12752.

$$
\frac{1}{\sqrt{\lambda}}=-2 \log \left[\frac{k_{s}}{3.7 d}+\frac{5.1286}{R_{e}^{0.89}}\right]
$$

University of Bolton
Western International College
BEng (Hons) Civil Engineering
Trimester 1 Examination 2021/2022
Mathematical Methods for Civil Engineering
Module No. CIE4022
Q3
While calibrating a Venuti meter, the following values were obtained for heads for different Q values as shown in Table 1.

Table 1

Discharge $\mathbf{Q}\left(\mathbf{m}^{3} / \mathbf{s}\right)$	$\mathbf{H}_{\mathbf{v}}{ }^{\mathbf{1 / 2}}$ $\left(\mathbf{m}^{1 / 2}\right)$
$0.1 \mathrm{E}-02$	0.11
$0.70 \mathrm{E}-02$	0.7
$0.8 \mathrm{E}-03$	0.75
$0.9 \mathrm{E}-03$	0.85
$1.00 \mathrm{E}-02$	1
$1.10 \mathrm{E}-02$	1.1
$1.20 \mathrm{E}-02$	1.25
$1.30 \mathrm{E}-02$	1.35

i. Using the graph paper provided, plot Q Vs $H^{1 / 2}$ for the Venturi meter on an appropriately scaled axis.
(8 marks)
ii. Draw an appropriate trend-line through the points and determine the slope of the graph, m.
(8 marks)
iii. Determine a value of C_{d} for venturi meter using the below equation

$$
C_{d}=\frac{m}{k \sqrt{2 g}} \text {, if the value of } k=2.37 \times 10^{-3} \text { and } g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

(4 marks)
Total 20 marks
PLEASE TURN THE PAGE.....

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester One Examination 2021/2022
Mathematical Methods for Civil Engineering
Module No. CIE4022

Q4
a) If $f(x)=2 x^{2}-4 x^{3}+3 x-5$, find $f^{\prime \prime}(x)$
b) The distance x metres moved by a car in a time 't' seconds is given by

$$
x=3 t^{3}-2 t^{2}+4 t-1
$$

Determine the velocity and acceleration when

$$
\begin{array}{ll}
\text { i. } & t=0 \\
\text { ii. } & t=1.5 \mathrm{~s}
\end{array}
$$

c) Evaluate $\int\left(\frac{\boldsymbol{\theta}+2}{\sqrt{\boldsymbol{\theta}}}\right) \boldsymbol{d \boldsymbol { \theta }}$ taking positive square roots only

Q5

a) Determine

> (i) $\int x \cos x d x$
> (ii) $\int 3 \sqrt{x} d x$
b) If $z=\sin x y$ show that $\frac{1}{y} \frac{\partial z}{\partial x}=\frac{1}{x} \frac{\partial z}{\partial y}$
c) Determine the area of triangular plot which is bounded by the three straight lines

$$
y=4-x ; \quad y=3 x ; \quad 3 y=x
$$

Q6
a) Determine
(i) $\int 2 t^{3} d t$
(ii) $\int 5 x^{2} d x$
b) Given $y=4 \sin 3 x \cos 2 t$, find
(i) $\frac{\partial y}{\partial x}$
(ii) $\frac{\partial y}{\partial t}$
c) Determine the stationary values of the function
$f(x, y)=x^{4}+4 x^{2} y^{2}-2 x^{2}+2 y^{2}-1$ and distinguish between them.
(12 marks)
Total 20 marks
END OF QUESTIONS

F

PLEASE TURN THE PAGE FOR FORMULA SHEET.....

Formula Sheet

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Coefficients in the expansion														
						1								
					1		1							
				1		2		1						
			1		3		3		1					
		1		4		6		4		1				
	1		5		10		10		5		1			
1		6		15		20		15		6		1		

$(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+$ $+b^{n}$

Velocity $\mathrm{v}=\frac{d x}{d t}$
Acceleration $\mathrm{a}=\frac{d^{2} x}{d t^{2}}$
$\int u d v=u v-\int v d u$
$\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c$
$\sqrt[n]{a^{m}}=a^{\frac{m}{n}}$

END OF FORMULA SHEET

END OF PAPER

