UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2021/2022

ADVANCED THERMOFLUID AND CONTROL SYSTEMS

MODULE NO: AME6015

Date: Tuesday 11th January 2022

Time: 10:00 – 12:00

INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer <u>FOUR</u> questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

CANDIDATES REQUIRE:

Formula Sheets (attached following questions).

Question 1

a) Steam is at 22 bar and has enthalpy of 2750KJ/Kg. Find the dryness fraction, specific volume and internal energy

(12 Marks)

b) A Reversible engine operates between temperature of 400°C and 2800°C, the heat being supplied is at the rate of 300KJ/s. Determine its efficiency and power output.

(8 Marks)

c) A Steam Power Plant working on the Carnot cycle operates between 1 bar 99.6°C and 10 bar 179.92 °C. Determine the pressure, temperature and entropy of all points and draw the cycle on the P-V and T-S diagram.

(5 Marks)

Total 25 Marks

Question 2

a) The phenomenon of drag is of consideration important to engineers involved in the design of vehicles. The drag F on a fully submerged smooth sphere of diameter D depends on its velocity V, the density of fluid ρ , and the viscosity of the fluid μ . Arrange these variables into independent dimensionless numbers.

(15 Marks)

b) Gasoline at a temperature of 20° C (v= 4.5×10^{-7} m²/s) flows through a flexible pipe from a gas pump to the gas tank of a car. If 3L/s are flowing and the pipe has an inside diameter of 60mm, what is the Reynolds number? Is the flow laminar or turbulent?

(10 Marks)

Total 25 Marks

Question 3

a) The Radiator of a steam heating system has a volume of 15L and is filled with superheated water vapour at 200Kpa and 200 degrees Celsius. At this moment both the inlet and the exit valves are closed. After a while the temperature of the steam drops to 80 degrees Celsius as a result of heat transfer to the room air. Determine the entropy change of the steam during this process.

(10 Marks)

b) i) Determine the head loss due to a flow of 100l/s of glycerine at 20°C through 100m of 20cm diameter pipe. Glycerine has a specific gravity of 1.26 and Viscosity 0.886 Ns/m².

ii) Rework the problem for water as fluid, with density = 1000Kg/m³ at 20°C and viscosity of 1.005×10^{-3} Ns/m². For water use the Moody diagram provided in the Appendix with ϵ =0.025cm.

(15 Marks)

Total 25 Marks

Question 4

a) Derive the differential equations describing the behaviour of the spring-massdamper system shown in **Figure Q4**.

(8 Marks)

b) Select the state variables and transfer the differential equations obtained from 4a into the state-space representation.

(10 Marks)

c) Determine the state space equations and system matrices A, B, C and D, where A, B, C, and D have their usual meaning, and the output variable are y_1 and \dot{y}_1 .

(4 Marks)

d) Evaluate the system matrices A, B, C and D for $m_1 = 2$, $m_2 = 5$, $k_1 = 10$, $k_2 = 6$ and $c_2 = 0.2$.

(3 Marks)

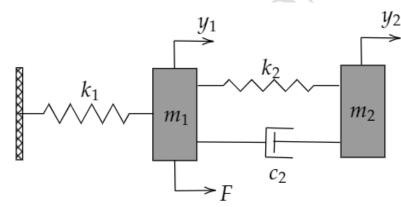
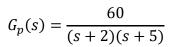


Figure Q4: Spring-mass-damper system with two masses.

Total 25 Marks

Question 5

A PID controller is used to control an automation processing plant as shown in Figure Q5. The open loop transfer function of the plant is given by



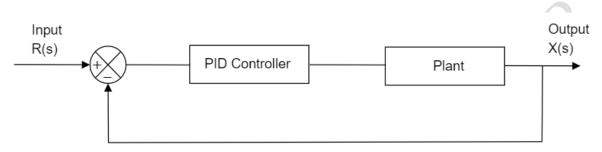


Figure Q5: Control system of the processing plant.

(a) Evaluate the performances of closed loop plant system (natural frequency, damping ratio, Percentage Overshoot, peak time, settling time and steady-state error) to assess its performance without the PID controller.

(10 Marks)

- (b) Design a PID controller to determine the parameter K_p , K_i and K_d , and clearly identify the design procedure if the system responses for a unit step input are required as:
 - The maximum overshoot is less than 8%.
 - The settling time is 40% less than that of without the PID controller.
 - The steady-state error is 0.

(15 Marks)

Total 25 Marks

Question 6

The transfer function of a servo control system is given as

$$G(s) = \frac{100}{(s+2)(s+10)}$$

a) Draw the asymptotic Bode plot.

b) Draw the Nyquist plot using the ω values at 0, 0.5, 1, 2, 3, 5, 10 and 100.

(10 Marks)

(15 Marks)

Total 25 Marks

END OF QUESTIONS

Formula Sheets follow over the page....

PLEASE TURN THE PAGE FOR FORMULA SHEETS AND PROPERTY TABLES...

Formula sheet

Blocks with feedback loop

$$G(s) = \frac{Go(s)}{1 + Go(s)H(s)}$$
 (for a negative feedback)

$$G(s) = \frac{Go(s)}{1 - Go(s)H(s)}$$
 (for a positive feedback)

Steady-State Errors

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{1 + G_o(s)} \theta_i(s)] \text{ (for the closed-loop system with a unity feedback)}$$

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{1 + \frac{G_o(s)}{1 + G_o(s)[H(s) - 1]}} \theta_i(s)] \text{ (if the feedback H(s) \neq 1)}$$

$$e_{zz} = \frac{1}{1 + \lim_{z \to 1} G_0(z)}$$
 (if a digital system subjects to a unit step input)

Laplace Transforms

A unit impulse	function	1
A unit step function	$\frac{1}{s}$	
A unit ramp function	$\frac{1}{s^2}$	

First order Systems

$$G(s) = \frac{\theta_o}{\theta_t} = \frac{G_u(s)}{\tau s + 1}$$
$$\tau \left(\frac{d\theta_o}{s}\right) + \theta_o = G_u \theta_t$$

 $\theta_o = G_u (1 - e^{-t/\tau})$ (for a unit step input)

$$\begin{split} \theta_o &= AG_{ss}(1 - e^{-t/\tau}) \text{ (for a step input with size A)} \\ \theta_o(t) &= G_{ss}(\frac{1}{\tau})e^{-(t/\tau)} \text{ (for an impulse input)} \end{split}$$

Second-order systems

$$\frac{d^{2}\theta_{s}}{dt^{2}} + 2\zeta\omega_{s}\frac{d\theta_{s}}{dt} + \omega_{s}^{2}\theta_{s} = b_{s}\omega_{s}^{2}\theta_{s}$$

$$G(s) = \frac{\theta_{s}(s)}{\theta_{l}(s)} = \frac{b_{s}\omega_{s}^{2}}{s^{2} + 2\zeta\omega_{s}s + \omega_{s}^{2}}$$

$$\omega dt = 1/2\pi \quad \omega dp = \pi$$
P.O. = exp($\frac{-\zeta\pi}{\sqrt{(1-\zeta^{2})}}$) ×100%
 $t_{s} = \frac{4}{\zeta\omega_{s}} \qquad \omega_{d} = \omega_{n}\sqrt{(1-\zeta^{2})}$

$$t_{s} = \frac{4}{\zeta\omega_{s}} \qquad \omega_{d} = \omega_{n}\sqrt{(1-\zeta^{2})}$$

$$U_{s} = \frac{4}{\zeta\omega_{s}} \qquad \omega_{d} = \omega_{n}\sqrt{(1-\zeta^{2})}$$

$$U_{s} = \frac{1}{\zeta\omega_{s}} \qquad \omega_{d} = \omega_{n}\sqrt{(1-\zeta^{2})} \qquad \omega_{d} = \omega_{n}\sqrt{(1-\zeta^{2})} \qquad \omega_{d}\sqrt{(1-\zeta^{2})} \qquad \omega_{d}\sqrt{(1-\zeta^$$

Controllability: R = [B AB A²B.....A⁽ⁿ⁻¹⁾ B]

Observability:

Laplace Transforms of common functions

Functions		
Unit pulse (Dirac delta	$\delta(t)$	F(s) = 1
distribution)		
Unit step function	1(t)	$F(s) = \frac{1}{s}$ $F(s) = \frac{1}{s^2}$
Ramp function	f(t) = at	$F(s) = \frac{1}{s^2}$
Sine function	$f(t) = \sin at$	$F(s) = \frac{a}{s^2 + a^2}$
Cosine function	$f(t) = \cos at$	$F(s) = \frac{s}{s^2 + a^2}$
Exponential function	$f(t) = e^{at}$	$F(s) = \frac{s}{s^2 + a^2}$ $F(s) = \frac{1}{s - a}$
Operations		
Differentiation	L(f'(t))	sF(s)-f(0)
Integration	$ \begin{array}{c} L(f'(t)) \\ L\left(\int f(t) dt\right) \end{array} $	$\frac{1}{s}F(s)$
Time shift	Lf(t-a)	$e^{-as}F(s)$

PARAMA

$$W = \frac{P_{1} V_{1} - P_{2} V_{2}}{n - 1} \qquad W = P (v_{2} - v_{1})$$

$$W = PV \ln \left(\frac{V_{2}}{V_{1}}\right)$$

$$Q = C_{4} A \sqrt{2gh}$$

$$V_{1} = C \sqrt{2g h_{2} \left(\frac{\rho g_{m}}{\rho g} - 1\right)}$$

$$\sum F = \frac{\Delta M}{\Delta t} = \Delta M$$

$$F = \rho QV$$

$$Re = V L \rho/\mu$$

$$dQ = du + dw$$

$$du = cu dT$$

$$dw = pdv$$

$$pv = mRT$$

$$h = hr + xhfg$$

$$s = st + xsfg$$

$$v = x Vg$$

$$Q - w = \sum mh$$

$$F = \frac{2\pi L\mu}{L_{n} \left(\frac{R_{2}}{R_{3}}\right)}$$

$$\begin{split} S_{g} &= C_{\mu L} \ L_{n} \frac{T}{273} + \frac{h_{R}}{T_{f}} \\ S &= C_{\mu L} \ L_{n} \frac{T_{f}}{273} + \frac{h_{f}g}{T_{f}} + C_{\mu n} \ L_{n} \frac{T}{T_{f}} \\ S_{2} - S_{1} &= MC_{p} \ L_{n} \frac{T_{2}}{T_{1}} - MRL_{n} \frac{P_{2}}{P_{1}} \\ F_{D} &= \frac{1}{2} CD \ \rho a^{2} s \\ F_{L} &= \frac{1}{2} C_{L} \rho a^{2} s \\ S_{p} &= \frac{d}{ds} (P + \rho g Z) \\ Q &= \frac{\pi D^{4} \Delta p}{128 \mu L} \\ h_{f} &= \frac{64}{R} \left(\frac{L}{D}\right) \left(\frac{v^{2}}{2g}\right) \\ h_{f} &= \frac{4fL v^{2}}{d2g} \\ f &= \frac{16}{Re} \\ h_{m} &= \frac{K v^{2}}{2g} \\ k_{m} &= \frac{k(v_{1}^{2} - v_{2})^{2}}{2g} \\ \zeta &= \left(1 - \frac{T_{L}}{T_{H}}\right) \\ S_{gan} &= (S_{2} - S_{1})) + \frac{Q}{T} \\ W &= (U_{1} - U_{2}) - T_{a}(S_{1} - S_{2}) - T_{a}S_{gan} \\ W_{u} &= W - P_{a}(V_{2} - V_{1}) \\ W_{wv} &= (U_{1} - U_{2}) - T_{0}(S_{1} - S_{2}) + P_{0}(V_{1} - V_{2}) \end{split}$$

$$\Phi = (U - U_0) - T(S - S_0) + Po(V - V_o)$$

$$I = ToS_{gen}$$

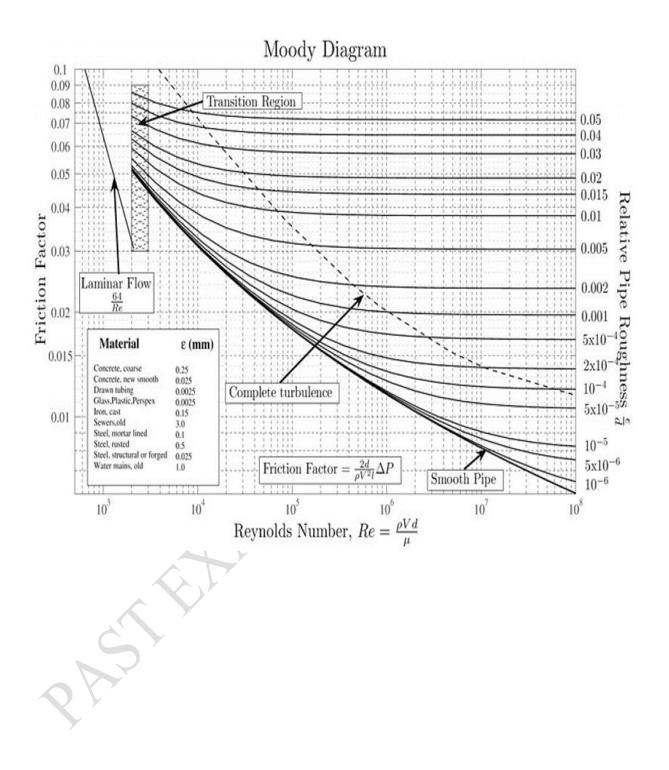
$$V = ro$$

$$\lambda = \mu \frac{V}{t}$$

$$F = \frac{2\pi L\mu u}{L_n \left(\frac{R_2}{R_1}\right)}$$

$$T = \frac{\pi^2 \mu N}{60t} (R_1^4 - R_2^4)$$

$$P = \frac{pgQH}{1000}$$



Symbol

m/A²

ml

I

.

p/o

τ

Е

EI

G

GJ

k

T/ŋ

1/k

-

-

μ

τ

-

f /μ

C.

Dimensions

ML -2

ML

ML²

-

ML -1T -2

M °L °T °

ML -1T -2

ML 3T-2

ML -1T -2

ML 3T-2

MT -2

ML 2T -2

M -1T 2

T -1

L 2T -1

ML -1T -1

L 2T-1

L 2T -1

M °L °T °

M °L °T °

L²T-²0-1

School of Engineering **BEng Mechanical Engineering** Semester One Examination 2021/2022 Advanced Thermofluid and Control Systems Module: AME6015

Quantity	Symbol	Dimensions	Quantity
Mass	m	м	Mass /Unit Area
Length	1	L	Mass moment
Time	t	т	Moment of Inertia
Temperature	т	θ	
Velocity	u	LT -1	Pressure /Stress
Acceleration	а	LT -2	Strain
Momentum/Impulse	mv	MLT -1	Elastic Modulus
Force	F	MLT -2	Flexural Rigidity
Energy - Work	W	ML ² T ⁻²	Shear Modulus
Power	Ρ	ML ² T ⁻³	Torsional rigidity
Moment of Force	м	ML ² T -2	Stiffness
Angular momentum		ML ² T ⁻¹	Angular stiffness
Angle	η	M °L °T °	Flexibility
Angular Velocity	ω	T -1	Vorticity
Angular acceleration	α	T -2	Circulation
Area	A	L ²	Viscosity
Volume	v	L ³	Kinematic Viscosity
First Moment of Area	Ar	L ³	Diffusivity
Second Moment of Area	I	L ⁴	Friction coefficient
Density	ρ	ML ⁻³	Restitution coefficient
Specific heat- Constant Pressure	Cp	L ² T ⁻² θ ⁻¹	Specific heat- Constant volume

DIMENSIONS FOR CERTAIN PHYSICAL QUANTITIES

Note: a is identified as the local sonic velocity, with dimensions L .T -1

END OF PAPER