OFF CAMPUS DIVISION WESTERN INTERNATIONAL COLLEGE BENG(HONS) MECHANICAL ENGINEERING TRIMESTER ONE EXAMINATION 2021/2022

ADVANCED MATERIALS & STRUCTURES

MODULE NO: AME6012

Date: Saturday 8th January 2022 Time: 10:00 – 13:00

<u>INSTRUCTIONS TO CANDIDATES:</u> There are FIVE questions on this

paper.

Answer **ANY FOUR** questions only.

All questions carry equal marks.

Marks for parts of questions are

shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleaned prior to

the examination.

CANDIDATES REQUIRE: Formula Sheet (attached)

Module No: AME6012

Q1

Part of a landing gear of an aircraft is subjected to the following direct stresses in the x, y and z directions as shown in the Figure Q1a. The stress tensor matrix for the given scenario is shown in Figure Q1b.

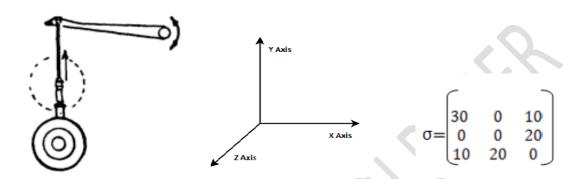


Figure Q1a. Aircraft landing gear

Figure Q1b. Stress Tensor Matrix

Determine the following:

a) Draw the elemental cube showing the stresses acting on it.

(5 marks)

b) Using this information given above prove that one of the principal stress is a compressive stress of 21 MPa

(10 marks)

c) the angles relative to xyz co-ordinates and make a sketch showing the direction of these stresses.

(5 marks)

d) If the yield stress for the material is 320 MPa determine the factor of safety assuming the material follows the Von Misses criterion.

(5 marks)

Total 25 marks

Module No: AME6012

Q2

A 90 X 120mm wide pultruded section fabricated from glass reinforced polyester is shown in Figure Q2 below with the material specification. The section is used as a cantilever 3 m in length. Beams are to be used to support a mass of 500 Kg and are placed at the midpoint of the cantilever. If the beam is designed to have a maximum design strain of 0.2 %, determine the following using the data from the **Table1**.

a) Sketch the effective shape of the cross section and determine the second moment of area.

(10 Marks)

b) Determine the stress through the depth of each layer of the beam.

(10 Marks)

c) Sketch the stress distribution through the depth of each beam and indicate the salient values.

(5 Marks)

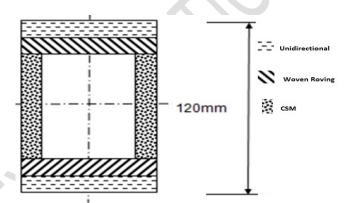


Figure Q2. Pultruded Cross section of the Beam

Table 1: Details of the composite structure

Material	Efficiency Factor, %	Modulus (GPa)	Volume Fraction, %	Thickness, mm		
Unidirectional	0.9	65	60	10		
Woven Roving	0.5	65	40	10		
CSM	0.25	65	30	40		
Polyester Resin	ı	3				

Total 25 marks

Module No: AME6012

Q3

a) The values of the endurance limits at various stress amplitude levels for low-alloy constructional steel fatigue specimens are given in the **Table 2** below where σ indicates stress value and N_f for number of cycles for fatigue.

Table 2, Stress & number of cycles

σ (MN/m²)	N _f (Cycles)						
550	1500						
510	10050						
480	20800						
450	50 500						
410	125000						
380	275000						

A similar specimen is subjected to the following program of cycles at the stress amplitudes stated; N_f =3000 at σ =510 MN/m², N_f =12000 at σ =450 MN/m² and N_f =80000 at σ = 380 MN/m², after which the sample remained unbroken. Determine the additional cycles the specimen need to withstand at σ =480 MN/m² prior to failure? Assume zero mean stress conditions.

(12 Marks)

b) The fatigue behavior of mild steel specimen under an alternating stress conditions with zero mean stress is given by the expression:

$$\sigma_r^a.N_f=K$$

Where σ_r , is the range of cyclic stress,

 N_f is the number of cycles to failure and K and 'a' are material constants of mild steel. If it is given that $N_f = 10^6$ when a = 300 MN/m² and $N_f = 10^8$ when a = 200 MN/m². Determine the constants K and 'a' and also find the life of the specimen when subjected to a stress range of 100 MN/m².

(13 Marks)

Total 25 marks

Q4.

For the portal frame which supports ship's hull is shown in **figure Q4** below, yield stress is 120 MPa, determine the following.

a) Show all the possible collapse mechanism for the portal frame for figure Q4.

(5 Marks)

b) Find the plastic modulus (Z_p) for the portal frame.

(15 Marks)

c) For the hollow rectangular cross section of the beam find the optimum beam dimensions for the likeliest failure mode, sketch the cross section showing the dimensions.

(5 Marks)

Figure Q4, Portal frame with forces.

Total 25 marks

Q5

The cross-section of an extruded aluminium alloy member 3m long is shown schematically in figure Q5 below. The section is subjected to a torque along its longitudinal axis. For this situation:

Thickness, t_1 = 0.015 m, t_2 = 0.011 m, t_3 = 0.006 m. Lengths, AB = AG = 0.25m, BC = GF = 0.45m, BG = CF = CD = DE = EF = 0.35m.

Take Modulus of rigidity, G= 30 GPa.

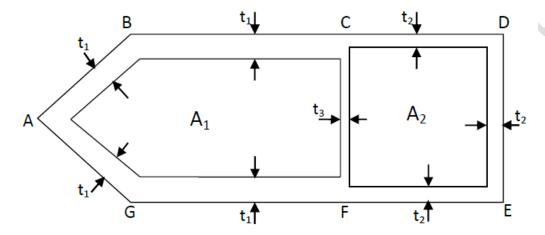


Figure Q5, Cross section of aluminium alloy

a) Determine maximum torque for an allowable shear stress of 50 MPa.

(8 marks)

b) For each wall thickness evaluate shear stresses in each part of the section and show the positions by a simple sketch

(4 marks)

c) Under the calculated torque determine the angle of twist

(3 marks)

d) After field trials a redesign has been suggested. This involves removing section DE from the cross section shown. For this new section determine the maximum shear stress and the percentage increase in the angle of twist.

(10 marks)

Total 25 marks

END OF QUESTIONS
PLEASE TURN THE PAGE FOR FORMULA SHEETS....

Formula Sheet

Elasticity - finding the direction vectors

$$\begin{bmatrix} S_x \\ S_y \\ S_z \end{bmatrix} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix}$$

$$k = \frac{1}{\sqrt{a^2 + b^2 + c^2}}$$

Where a, b and c are the co-factors of the eigenvalue stress tensor.

$$l = ak$$
 $l = \cos \alpha$,
 $m = bk$ $m = \cos \theta$,
 $n = ck$ $n = \cos \varphi$.

Principal stresses and Mohr's Circle

Yield Criterion

$$\tau_{12} = \frac{\sigma_1 - \sigma_2}{2}$$

$$\tau_{13} = \frac{\sigma_1 - \sigma_3}{2}$$

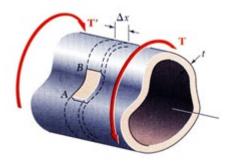
$$\tau_{23} = \frac{\sigma_2 - \sigma_3}{2}$$

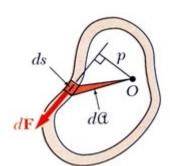
Von Mises

Tresca

$$\sigma_{von\,Mises} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

$$\sigma_{tresca} = 2 \cdot \tau_{max}$$


$$\tau_{\max} = \max \left(\frac{\left| \sigma_1 - \sigma_2 \right|}{2}; \frac{\left| \sigma_1 - \sigma_3 \right|}{2}; \frac{\left| \sigma_3 - \sigma_2 \right|}{2} \right)$$


University Of Bolton
Western International College
BEng(Hons) Mechanical Engineering
Trimester One Examination 2021/2022

Advanced Materials & Structures

Module No: AME6012

Torsion in close thin wall cross section (CTW)

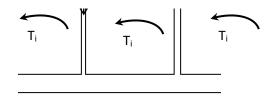
 Shear stress varies inversely with thickness

$$\tau = \frac{T}{2tA}$$

Shear flow q

$$q = \tau t$$

Applied torque T


$$T = 2qA$$

Angle of twist φ

$$\phi = \frac{TL}{4A^2G} \oint \frac{ds}{t}$$

Torsion in multi-cells thin wall cross section

 Section considered as an assembly of N tubular sub-sections (compartments), each subjected to torque Ti as shown in the figure below:

Total torque

$$T = \sum_{i=1}^{n} T_i = 2\sum_{i=1}^{n} q_i A_i$$

Common angle of twist for all compartments:

$$\theta = \frac{L}{4GA_i} \oint \frac{q_i - q'}{t(s)} ds$$

Module No: AME6012

$$\begin{split} \varphi_1 &= \frac{L}{2GA_1} \left(\frac{q_1\ell_1}{t_1} + \frac{(q_1 - q_2)\ell_3}{t_3} \right) \\ \varphi_2 &= \frac{L}{2GA_2} \left(\frac{q_2\ell_2}{t_2} + \frac{(q_2 - q_1)\ell_3}{t_3} \right) \end{split}$$

Where q is the shear flow of the main compartment, q' is the shear flow due to torque in adjacent compartments, A_i the area of cross-section i, t is the thickness of the cross-section and s is the circumference of the compartment.

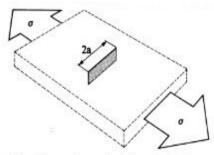
Torsion in open thin wall cross section (OTW)

If
$$\frac{b}{t} = 10$$
 then $\alpha = \beta = \frac{1}{3}$

and $J_{\alpha} = J_{\beta} = J = \sum_{i=1}^{n} \frac{1}{3} b_{i} t_{i}^{3}$

Shear stress

 $\tau_{\text{max}} = \frac{Tt_{\text{max}}}{J}$


Twist angle

 $\varphi = \frac{LT}{GJ}$

Module No: AME6012

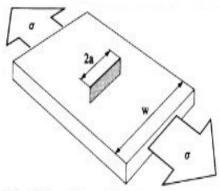
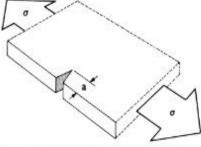
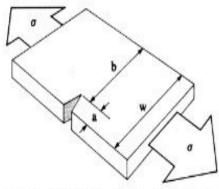

Fracture mechanics

Table: Y values for plates loaded in tension


 Through crack of length 2a in an infinite plate

$$Y = 1$$


(3) Through crack of length 2a in a plate of width w.

$$Y = \left(\sec\frac{\pi a}{w}\right)^{1/2}, \frac{2a}{w} \le 0.7$$

(2) Edge crack of length a in an *infinite* plate Y = 1.12

Because plane strain and plane stress have identical stress fields, this calibration is also for an edge scratch of depth a on a large body carrying tensile stress σ .

(4) Edge crack of length a in a plate of width w.

$$Y = 0.265 \left(\frac{b}{w}\right)^4 + \frac{0.875 + 0.265a/w}{(b/w)^{3/2}}$$

Life Calculations

$$K = Y\sigma\sqrt{\pi a}$$

$$\frac{da}{dN} = C(\Delta K)^m$$

$$N = \frac{1}{CY^{m} \sigma_{a}^{m} \pi^{\frac{m}{2}}} \left[\frac{a^{1 - \frac{m}{2}}}{1 - \frac{m}{2}} \right]_{a_{0}}^{a_{1}}$$

Composite materials

$$E_c = \eta E_f V_f + E_m \left(1 - V_f \right)$$

Miners Rule.

Miners Rule
$$\sum \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots = 1$$

Module No: AME6012

Plastic Hinges

DIMENSIONS AND PROPERTIES

Designation		Mass	Area	Ratios for		Second Moment		Radius		Elastic		Plastic		Torsional		Surface
Size	Thickness	kness per	of	Local Buckling		of Area		of Gyration		Modulus		Modutus		Constants		Area
20 20	1	Metre	Section			Axis	Axis	Axes	Axis	Axis	Axis	Axis	Axis			per
D B			Α.	(1)	6.0	X-X	y-y	X-X	y-y	X-X	y-y	x-x	y-y	J	C	Metre
mm '	mm	kg	cm ²	d/t	b/t	cm ⁴	cm4	cm	cm	cm3	cm ³	cm ³	cm ³	cm ⁴	cm ³	m ²
50x30	2.5	2.89	3.68	17.0	9.00	11.8	5.22	1.79	1.19	4.73	3.48	5.92	4.11	11.7	5.73	0.154
	3.0	3.41	4.34	13.7	7.00	13.6	5.94	1.77	1.17	5.43	3.96	6.88	4.76	13.5	6.51	0.152
	3.2	3.61	4.60	12.6	6.38	14.2	6.20	1.76	1.16	5.68	4.13	7.25	5.00	14.2	6.80	0.152
	4.0	4.39	5.59	9.50	4.50	16.5	7.08	1.72	1.13	6.60	4.72	8.59	5.88	16.6	7.77	0.150
	5.0	5.28	6.73	7.00	3.00	18.7	7.89	1.67	1.08	7.49	5.26	10.0	6.80	19.0	8.67	0.147
60x40	2.5	3.68	4.68	21.0	13.0	22.8	12.1	2.21	1.60	7.61	6.03	9.32	7.02	25.1	9.73	0.194
	3.0	4.35	5.54	17.0	10.3	26.5	13.9	2.18	1.58	8.82	6.95	10.9	6.19	29.2	11.2	0.192
	3.2	4.62	5.88	15.8	9.50	27.8	14.6	2.18	1.57	9.27	7.29	11.5	8.64	30.8	11.7	0.190
	5.0	5.64	7.19 8.73	9.00	5.00	32.8	17.0	2.14	1.54	10.9	8.52	13.8	10.3	36.7	13.7	0.190
	6.3	8.31	10.6	6.52	3.35	38.1 43.4	19.5	2.09	1.50	12.7	9.77	16.4	12.2	43.0	15.7	0.187
80-40			_		-		21.9	2.02	1.44	14.5	11.0	19.2	14.2	49.5	17.6	0.18
80x40	3.0	5.29	6.74	23.7	10.3	54.2	18.0	2.84	1.63	13.6	9.00	17.1	10.4	43.8	15.3	0.233
	4.0	5.62 6.90	7.16 8.79	17.0	9.50 7.00	57.2	18.9	2.63	1.63	14.3	9.46	18.0	11.0	46.2	16.1	0.23
	5.0	8.42	10.7	13.0	5.00	68.2 80.3	22.2	2.79	1.59	17.1	11.1	21.8	13.2	55.2 65.1	18.9	0.230
	6.3	10.3	13.1	9.70	3.35	93.3	29.2	2.67	1.49	23.3	12.9	26.1	15.7	75.6	24.8	0.22
	8.0	12.5	16.0	7.00	2.00	106	32.1	2.58	1.42	26.5	16.1	36.5	21.2	85.8	27.4	0.21
90x50	3.0	6.24	7.94	27.0	13.7	84.4	33.5	3.26	2.05	18.8	13.4	23.2	15.3	76.5	22.4	0.27
	3.6	7.40	9.42	22.0	10.9	98.3	38.7	3.23	2.03	21.8	15.5	27.2	18.0	89.4	25.9	0.27
	5.0	9.99	12.7	15.0	7.00	127	49.2	3.16	1.97	28.3	19.7	36.0	23.5	116	32.9	0.26
	6.3	12.3	15.6	11.3	4.94	150	57.0	3.10	1.91	33.3	22.8	43.2	28.0	138	38.1	0.26
	8.0	15.0	19.2	8.25	3.25	174	64.6	3.01	1.84	38.6	25.8	51.4	32.9	160	43.2	0.25
100x50	3.0	6.71	8.54	30.3	13.7	110	36.8	3.58	2.08	21.9	14.7	27.3	16.8	88.4	25.0	0.29
	3.2	7.13	9.08	28.3	12.6	116	38.8	3.57	2.07	23.2	15.5	28.9 .	17.7	93.4	26.4	0.29
	4.0	8.78	11.2	22.0	9.50	140	46.2	3.53	2.03	27.9	18.5	35.2	21.5	113	31.4	0.29
	5.0	10.8	13.7	17.0	7.00	167	54.3	3.48	1.99	33.3	21.7	42.6	25.8	135	36.9	0.28
	6.3	13.3	16.9	12.9	4.94	197	63.0	3.42	1.93	39.4	25.2	51.3	30.8	160	42.9	0.28
	8.0	16.3	20.8	9.50	3.25	230	71.7	3.33	1.86	46.0	28.7	61.4	36.3	186	48.9	0.27
100x60	3.0	7.18	9.14	30.3	17.0	124	55.7	3.68	2.47	24.7	18.6	30.2	21.2	121	30.7	0.31
	3.6	8.53	10.9	24.8	13.7	145	64.8	3.65	244	26.9	21.6	35.6	24.9	142	35.6	0.31
	5.0	11.6	14.7	17.0	9.00	189	83.6	3.58	2.38	37.8	27.9	47.4	32.9	188	45.9	0.30
	6.3	14.2	18.1	12.9	6.52	225	98.1	3.52	2.33	45.0	32.7	57.3	39.5	224	53.8	0.30
	8.0	17.5	22.4	9.50	4.50	264	113	3.44	2.25	52.8	37.8	68.7	47.1	265	62.2	0.29
120x60	3.6	9.66	12.3	30.3	13.7	227	76.3	4.30	2.49	37.9	25.4	47.2	28.9	183	43.3	0.35
	5.0	13.1	16.7	21.0	9.00	299	96.8	4.23	2.43	49.9	32.9	63.1	38.4	242	56.0	0.3
	6.3	16.2	20.7	15.0	6.52	358	116	4.16	2.37	59.7	38.8	76.7	46.3	290	65.9	0.3
	8.0	20.1	25.6	12.0	4.50	425	135	4.08	2.30	70.8	45.0	92.7	55.4	344	76.6	0.33
120x60	5.0	14.7	18.7	21.0	13.0	365	193	4.42	3.21	60.9	48.2	74.6	56.1	401	77.9	0.3
	6.3	18.2	23.2	16.0	9.70	440	230	4.36	3.15	73.3	57.6	91.0	68.2	487	92.9	0.3
1 3	8.0	22.6	28.8	12.0	7.00	525	273	4.27	3.08	87.5	68.1	111	82.6	587	110	0.3
	10.0	27.4	34.9	9.00	5.00	609	313	4.18	2.99	102	78.1	131	97.3	688	126	0.3
150x100		15.1	19.2	34.5	22.0	607	324	5.63	4.11	81.0	64.8	97.4	73.6	660	105	0.4
	5.0	18.6	23.7	27.0	17.0	739	392	5.58	4.07	98.5	78.5	119	90.1	807	127	0.4
	6.3	23.1	29.5	20.8	12.9	898	474	5.52	4.01	120	94.8	147	110	986	153	0.4
	8.0	28.9	36.8	15.8	9.50	1087	569	5.44	3.94	145	114	180	135	1203	183	0.4
	10.0	35.3	44.9	12.0	7.00	1282	665	5.34	3.85	171	133	216	161	1432	214	
	12.5	42.8	54.6	9.00	5.00	1488	763	5.22	3.74	198	153	256	190	1679	246	0.4

END OF PAPER