UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE

BENG(HONS) MECHANICAL ENGINEERING

TRIMESTER ONE EXAMINATION 2021/2022

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.

Answer TWO Questions from Part A and TWO Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

CANDIDATES REQUIRE:

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062

PART A

Q1

a) In a system of forces, the relationship between two forces in Newton F_{1} and F_{2} is given by:

$$
\begin{aligned}
& F_{1}+2 F_{2}+4=0 \\
& 5 F_{1}+3 F_{2}-1=0
\end{aligned}
$$

Use 'Matrices Method' to solve for F_{1} and F_{2}
(10 marks)
b) Two alternating voltages are given by

$$
\begin{aligned}
& V_{1}=10 \sin \omega t \text { volts } \\
& V_{2}=14 \sin \left(\omega t+\frac{\pi}{3}\right) \text { volts }
\end{aligned}
$$

Determine a sinusoidal expression for the resultant $\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$, using sine and cosine rule and compare the results graphically.
(10 marks)
c) If, $z=7\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)$, using De Moivre's theorem find z^{5}

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q2.
a) Use partial Fractions to expand:

$$
Y(s)=\frac{\mathrm{x}^{2}+7 \mathrm{x}+3}{\mathrm{x}^{2}(\mathrm{x}+3)}
$$

b) The value of a lathe originally valued at AED 30000 depreciates 15% per annum.
i) Calculate its value after 4 years
(5 marks)
ii) If the machine is sold when its value is less than AED 5400. After how many years is the lathe sold?
(5 marks)
c) Solve the logarithmic equation

$$
\log x^{4}-\log x^{3}=\log 5 x-\log 2 x
$$

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q3.
a) The law connecting friction F and load L for an experiment is given by

$$
F=a L-M b,
$$

where a, b \& M are constants. Given that when $F=6.84 N ., L=2.3 N, M=4.4$ and when $F=1.23 \mathrm{~N}, \mathrm{~L}=8.5 \mathrm{~N}, \mathrm{M}=6.7$. Find the following:
i) the value of a \& b using determinant method
ii) find the value of F when $L=6.0$ and $M=0$
b) Use partial fractions to expand

$$
\frac{5 x^{2}-17 x+15}{(x-1)(x-2)^{2}}
$$

c) Solve, correct to 4 significant figures:

$$
\mathrm{e}^{(\mathrm{x}+1)}=3 \mathrm{e}^{(2 \mathrm{x}-5))}
$$

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062

PART B

Q4.

A steel cube block of 50 mm side is subjected to a force of 10 kN (tension), 12.5 kN (compression) and 7.5 kN (tension) along x, y and z directions respectively as shown

in Figure Q4.

Figure Q4. Steel cube block
Determine the following:
a) Stresses in x, y and z directions
b) Assuming Poisson's ratio as 0.3 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force.
c) If modulus of elasticity $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
(8marks)
d) The change in volume of the block due to loading specified above.

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q5.
a) A compound bar consists of a circular rod of steel of diameter 20 mm rigidly fitted into a copper tube of internal diameter 20 mm and thickness 5 mm as shown in FigureQ5a.If the bar is subjected to a load of 100 kN , determine the following:
i. Stress developed in steel rod
(5 marks)
ii. Stress developed in copper tube

Take modulus of elasticity, E of steel as 200GPa and E of copper as 120 GPa
iii. Define compound bar and its rules of calculation

Figure Q5a. A Compound bar

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q5 continued...
b) The resultant of four concurrent forces which are acting at a point O as shown in figure Q5b is along Y-axis. The magnitude of forces F1, F3 and F4 are 10kN,20kN and 40 kN respectively. The angles made by $10 \mathrm{kN}, 20 \mathrm{kN}$ and 40 kN with X -axis are $30^{\circ}, 90^{\circ}$ and 120° respectively.

Determine the magnitude and direction of F2 if the resultant is 72 kN .

Figure Q5b. Concurrent force system
Total 25 marks

Off Campus Division Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q6.
A simply supported beam carries concentrated lateral loads at C and D, and a uniformly distributed lateral load over the length DF as shown in Figure Q6. Determine:
i. Reaction loads at the support
ii. Construct the shear force diagram for the beam
iii. Construct the bending moment diagram for the beam
iv. Find the position of maximum bending moment.

Figure Q6. Simply supported beam

Total 25 marks

END OF PART B

END OF QUESTIONS

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062

FORMULA SHEET

Determinants
$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$
Series
$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{U}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$
Binomial
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$
Validity $|x|<1$ Partial Fractions
$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$

Stress
Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area
Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain
Normal $\quad \varepsilon=\frac{\delta \ell}{\ell}$
Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)

Compound Bars

$P=P_{1}+P_{2}$
$P=\sigma_{1} A_{1}+\sigma_{2} A_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,

Elastic Constants

$E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}$

Off Campus Division
Western International College
BEng(Hons) Mechanical Engineering
Semester 1 Examination 2021/2022
Engineering Principles I
Module No. AME4062

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E} \\
& \varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
& \varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \varepsilon_{v}=\frac{\delta V}{V}
\end{aligned}
$$

Compressibility

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

