UNIVERSITY OF BOLTON

INSTITUTE OF MANAGEMENT

MSC ACCOUNTANCY AND FINANCIAL MANAGEMENT

SEMESTER ONE EXAMINATIONS 2021-2022

ADVANCED FINANCIAL MANAGEMENT

MODULE NO: ACC7504

Date: Wednesday 12th January 2022

INSTRUCTIONS TO CANDIDATES:

Time: 14:00-17:00

There are THREE questions on this paper in two sections.

Answer ALL THREE questions.
A formula sheet will be provided

Section A - This ONE question is COMPULSORY and must be attempted

Question one

1) Squid Game Plc

The corporate treasury team of Squid-game plc are debating what strategy to adopt towards interest rate risk management. The company's financial projections show an expected cash deficit in three months' time of £24 million, which will last for a period of approximately six months. Base rate is currently 6% per year, and Squid Game can borrow at 1.5% over base, or invest at 1% below base. The treasury team believe that economic pressures in the euro zone y will soon force the European Central Bank (ECB) to raise interest rates on the euro by 2% per year, which could lead to a similar rise in UK interest rates.

The ECB move is not certain, as there has recently been significant economic pressure on the bank from the governments of euro zone countries not to raise interest rates.

In the UK, the economy is still recovering from a recession and representatives of industry are calling for interest rates to be cut by 1%. Opposing representations are being made by pensioners, who do not wish their investment income to fall further due to an interest rate cut.

The corporate treasury team believes that interest rates are more likely to rise than to fall, and does not want interest payments during the six month period to increase by more than $£ 20,, 000$ from the amounts that would be paid at current interest rates. It is now
1 December 2021.

Institute of Management
MSc Accountancy and Financial Management
Semester One 2021/2022
Advanced Financial Management
Module No. ACC 7504
Section A Question 1 continued....

LIFFE prices (1 December 2021)
Futures
LIFFE £1,000,000 three month sterling interest rate (points of 100\%)
December 93.75
March 93.45
June 93.10
Options
LIFFE $£ 1,000,000$ short sterling options (points of 100%)

Exercise price	Calls June	Puts June
9200	3.33	-
9250	2.93	-
9300	2.55	0.92
9350	2.20	1.25
9400	1.74	1.84
9450	1.32	2.90
9500	0.87	3.46

Required:
(a) Write a report for the management to review Squid Game plc's position by Illustrating results of futures and options hedges if, by 1 March:
(i) Interest rates rise by $\mathbf{2 \%}$. Futures prices move by 1.8%
(ii) Interest rates fall by 1%. Futures prices move by 0.9%.

Recommend with reasons, how Squid Game plc should hedge its interest rate exposure. All relevant calculations must be shown. Taxation, transactions costs and margin requirements may be ignored. State clearly any assumptions that you make.
(24 marks)
(b) Discuss the advantages and disadvantages of other derivative products that Squid Game plc might have used to hedge the risk.
(6 marks)

Section A Question 1 continued....
PLEASE TURN THE PAGE....

Institute of Management
MSc Accountancy and Financial Management
Semester One 2021/2022
Advanced Financial Management
Module No. ACC 7504

Section A Question 1 continued...

(c) Explain by setting out the key risks the project is carrying and suggest how these can be mitigated.
(d) Set out a summary of the roles and responsibilities of a Financial Manager
(6 marks)
(e) Explain how the implementation of risk management processes may help to increase the shareholders value.
(10 marks)

Professional marks will be awarded for the layout and presentation of the report

Total: 60 Marks

Institute of Management
MSc Accountancy and Financial Management
Semester One 2021/2022
Advanced Financial Management
Module No. ACC 7504

Section B - BOTH questions are COMPULSORY and MUST be attempted

QUESTION 2

2. ABODE PLC

The directors of Abode plc, a large multinational company which is involved in a wide range of different activities, are considering the possible purchase of Lingard Ltd, a private company which makes and sells office furniture, a business which is not currently included among Abode plc's activities. Lingard Ltd has recently experienced substantial trading difficulties and, if Abode plc succeeds in its proposed acquisition, it could replace the existing management of Lingard Ltd.
The directors of Abode plc are unsure as to how the business of Lingard Ltd should be valued. They are aware that two possible bases exist: either the value of the assets of Lingard Ltd or its past earnings could be used to determine a purchase price.

Required:

(a) Explain the rationale underlying the assets and the earnings bases of valuation.
(7 marks)
(b) Evaluate the types of difficulties, which might exist in applying each of the two methods.
(8 marks)
(c) Explain how the individual circumstances surrounding the purchase of Lingard Ltd might determine your choice of method in this case.
(5 marks)
Total: 20 marks

Section B continues over the page....

PLEASE TURN THE PAGE....

Institute of Management
MSc Accountancy and Financial Management
Semester One 2021/2022
Advanced Financial Management
Module No. ACC 7504

Section B continued....

QUESTION 3

3. WOLFOO

You are the Advanced Financial Manager at Happyfield Accountants Ltd, your role is to work in the best interest in advising Wolfoo, an intercontinental company which has developed a revolutionary wooden toys for children and is currently planning to build a large factory in China to undertake production. The company trades in US dollars \$.

The company has a high, AAB, credit rating in China, and is able to issue US\$ Commercial Paper, with maturities of up to one year, at very good rates of interest.

However, the company is involved in a complex series of legal cases in Switzerland, where a number of Swiss companies are alleging patent infringements and are suing Wolfoo for several million Swiss Francs. These actions have delayed an agreed sale of Wolfoo's Swiss operations for SF250 million.

Meanwhile, Wolfoo urgently needs to raise SF200 million to pay for the new machinery that is required for its new US factory, and which is available only from Switzerland. Because of the legal disputes in Switzerland, the Swiss supplier refuses to give Wolfoo any trade credit.

You are now approached by a rapidly growing, well-known, UK travel company - Livercool plc - which specialises in travel to and from Switzerland. This company is currently seeking to raise a fixed interest US\$ loan over a five year term, in order to pay for some new Boeing jet aircraft.

Required:

(a) Explain how a swap between Livercool plc and Wolfoo could be advantageous.
(5 marks)
(b) What risks could be present in such a swap and how might they be reduced?
(c) What are the main ways by which governments attempt to restrict international trade?

Total: $\mathbf{2 0}$ marks

Formulae

Modigliani and Miller Proposition 2 (with tax)

$$
k_{e}=k_{e}^{i}+(1-T)\left(k_{e}^{i}-k_{d}\right) \frac{V_{d}}{V_{e}}
$$

The Capital Asset Pricing Model

$$
\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{f}}+\beta_{\mathrm{i}}\left(\mathrm{E}\left(\mathrm{r}_{\mathrm{m}}\right)-\mathrm{R}_{\mathrm{f}}\right)
$$

The asset beta formula

$$
\beta_{\mathrm{a}}=\left[\frac{\mathrm{V}_{\mathrm{e}}}{\left(\mathrm{~V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})\right)} \beta_{\mathrm{e}}\right]+\left[\frac{\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})}{\left(\mathrm{V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})\right)} \beta_{\mathrm{d}}\right]
$$

The Growth Model

$$
P_{o}=\frac{D_{0}(1+g)}{\left(r_{e}-g\right)}
$$

Gordon's growth approximation

$$
\mathrm{g}=\mathrm{br} \mathrm{e}_{\mathrm{e}}
$$

The weighted average cost of capital

$$
\text { WACC }=\left[\frac{V_{e}}{V_{e}+V_{d}}\right] k_{e}+\left[\frac{V_{d}}{V_{e}+V_{d}}\right] k_{d}(1-T)
$$

The Fisher formula

$$
(1+i)=(1+r)(1+h)
$$

Purchasing power parity and interest rate parity

$$
S_{1}=S_{0} \times \frac{\left(1+h_{c}\right)}{\left(1+h_{b}\right)} \quad F_{0}=S_{0} \times \frac{\left(1+i_{c}\right)}{\left(1+i_{b}\right)}
$$

Modified Internal Rate of Return

$$
\operatorname{MIRR}=\left[\frac{P V_{R}}{P V_{I}}\right]^{\frac{1}{n}}\left(1+r_{e}\right)-1
$$

The Black-Scholes option pricing model
$\mathrm{c}=\mathrm{P}_{\mathrm{a}} \mathrm{N}\left(\mathrm{d}_{1}\right)-\mathrm{P}_{\mathrm{e}} \mathrm{N}\left(\mathrm{d}_{2}\right) \mathrm{e}^{-\mathrm{rt}}$
Where:
$\mathrm{d}_{1}=\frac{\ln \left(P_{\mathrm{a}} / P_{e}\right)+\left(r+0.5 \mathrm{~s}^{2}\right) \mathrm{t}}{\mathrm{s} \sqrt{\mathrm{t}}}$
$d_{2}=d_{1}-s \sqrt{t}$

The Put Call Parity relationship

$$
p=c-P_{a}+P_{e} e^{-r t}
$$

Present Value Table

Present value of 1 i.e. $(1+r)^{-n}$
$\begin{array}{ll}\text { Where } & r=\text { discount rate } \\ & n=\text { number of periods until payment }\end{array}$

Discount rate (r)
Periods

(n)	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	1
2	0.980	0.961	0.943	0.925	0.907	0.890	0.873	0.857	0.842	0.826	2
3	0.971	0.942	0.915	0.889	0.864	0.840	0.816	0.794	0.772	0.751	3
4	0.961	0.924	0.888	0.855	0.823	0.792	0.763	0.735	0.708	0.683	4
5	0.951	0.906	0.863	0.822	0.784	0.747	0.713	0.681	0.650	0.621	5
6	0.942	0.888	0.837	0.790	0.746	0.705	0.666	0.630	0.596	0.564	6
7	0.933	0.871	0.813	0.760	0.711	0.665	0.623	0.583	0.547	0.513	7
8	0.923	0.853	0.789	0.731	0.677	0.627	0.582	0.540	0.502	0.467	8
9	0.914	0.837	0.766	0.703	0.645	0.592	0.544	0.500	0.460	0.424	9
10	0.905	0.820	0.744	0.676	0.614	0.558	0.508	0.463	0.422	0.386	10
11	0.896	0.804	0.722	0.650	0.585	0.527	0.475	0.429	0.388	0.350	11
12	0.887	0.788	0.701	0.625	0.557	0.497	0.444	0.397	0.356	0.319	12
13	0.879	0.773	0.681	0.601	0.530	0.469	0.415	0.368	0.326	0.290	13
14	0.870	0.758	0.661	0.577	0.505	0.442	0.388	0.340	0.299	0.263	14
15	0.861	0.743	0.642	0.555	0.481	0.417	0.362	0.315	0.275	0.239	15

(n)	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	
1	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	1
2	0.812	0.797	0.783	0.769	0.756	0.743	0.731	0.718	0.706	0.694	2
3	0.731	0.712	0.693	0.675	0.658	0.641	0.624	0.609	0.593	0.579	3
4	0.659	0.636	0.613	0.592	0.572	0.552	0.534	0.516	0.499	0.482	4
5	0.593	0.567	0.543	0.519	0.497	0.476	0.456	0.437	0.419	0.402	5
6	0.535	0.507	0.480	0.456	0.432	0.410	0.390	0.370	0.352	0.335	6
7	0.482	0.452	0.425	0.400	0.376	0.354	0.333	0.314	0.296	0.279	7
8	0.434	0.404	0.376	0.351	0.327	0.305	0.285	0.266	0.249	0.233	8
9	0.391	0.361	0.333	0.308	0.284	0.263	0.243	0.225	0.209	0.194	9
10	0.352	0.322	0.295	0.270	0.247	0.227	0.208	0.191	0.176	0.162	10
11	0.317	0.287	0.261	0.237	0.215	0.195	0.178	0.162	0.148	0.135	11
12	0.286	0.257	0.231	0.208	0.187	0.168	0.152	0.137	0.124	0.112	12
13	0.258	0.229	0.204	0.182	0.163	0.145	0.130	0.116	0.104	0.093	13
14	0.232	0.205	0.181	0.160	0.141	0.125	0.111	0.099	0.088	0.078	14
15	0.209	0.183	0.160	0.140	0.123	0.108	0.095	0.084	0.074	0.065	15

Annuity Table

Present value of an annuity of 1 i.e. $\frac{1-(1+r)^{-n}}{r}$

$$
\begin{array}{ll}
\text { Where } & r=\text { discount rate } \\
& n=\text { number of periods }
\end{array}
$$

Discount rate (r)
Periods

(n)	1\%	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	1
2	1.970	1.942	1.913	1.886	1.859	1.833	1.808	1.783	1.759	1.736	2
3	2.941	$2 \cdot 884$	$2 \cdot 829$	$2 \cdot 775$	$2 \cdot 723$	2.673	$2 \cdot 624$	$2 \cdot 577$	$2 \cdot 531$	$2 \cdot 487$	3
4	3.902	3.808	$3 \cdot 717$	3.630	$3 \cdot 546$	3.465	$3 \cdot 387$	$3 \cdot 312$	$3 \cdot 240$	$3 \cdot 170$	4
5	4.853	$4 \cdot 713$	4.580	4.452	$4 \cdot 329$	$4 \cdot 212$	4.100	3.993	$3 \cdot 890$	3.791	5
6	$5 \cdot 795$	5.601	$5 \cdot 417$	$5 \cdot 242$	5.076	4.917	$4 \cdot 767$	$4 \cdot 623$	$4 \cdot 486$	4.355	6
7	6.728	6.472	6.230	6.002	5.786	$5 \cdot 582$	$5 \cdot 389$	$5 \cdot 206$	5.033	$4 \cdot 868$	7
8	7.652	7.325	7.020	6.733	6.463	$6 \cdot 210$	5.971	$5 \cdot 747$	$5 \cdot 535$	$5 \cdot 335$	8
9	8.566	$8 \cdot 162$	7.786	7.435	7.108	$6 \cdot 802$	$6 \cdot 515$	6.247	5.995	$5 \cdot 759$	9
10	$9 \cdot 471$	8.983	8.530	$8 \cdot 111$	$7 \cdot 722$	$7 \cdot 360$	$7 \cdot 024$	$6 \cdot 710$	$6 \cdot 418$	$6 \cdot 145$	10
11	$10 \cdot 368$	9.787	9.253	8.760	$8 \cdot 306$	7.887	7.499	7-139	$6 \cdot 805$	$6 \cdot 495$	11
12	$11 \cdot 255$	$10 \cdot 575$	9.954	9.385	8.863	8.384	7.943	7.536	$7 \cdot 161$	6.814	12
13	$12 \cdot 134$	$11 \cdot 348$	$10 \cdot 635$	9.986	$9 \cdot 394$	8.853	8.358	7.904	$7 \cdot 487$	$7 \cdot 103$	13
14	13.004	$12 \cdot 106$	11.296	$10 \cdot 563$	9.899	$9 \cdot 295$	$8 \cdot 745$	8.244	$7 \cdot 786$	7.367	14
15	13.865	$12 \cdot 849$	11.938	$11 \cdot 118$	$10 \cdot 380$	$9 \cdot 712$	$9 \cdot 108$	$8 \cdot 559$	8.061	$7 \cdot 606$	15
(n)	11\%	12\%	13\%	14\%	15\%	16\%	17\%	18\%	19\%	20\%	
1	0.901	0.893	$0 \cdot 885$	0.877	0.870	$0 \cdot 862$	0.855	0.847	$0 \cdot 840$	0.833	1
2	1.713	1.690	1.668	1.647	1.626	1.605	1.585	1.566	1.547	1.528	2
3	2.444	2.402	$2 \cdot 361$	2.322	2.283	$2 \cdot 246$	$2 \cdot 210$	$2 \cdot 174$	$2 \cdot 140$	$2 \cdot 106$	3
4	$3 \cdot 102$	3.037	$2 \cdot 974$	2.914	$2 \cdot 855$	2.798	$2 \cdot 743$	$2 \cdot 690$	2.639	2.589	4
5	3.696	3.605	3.517	3.433	3.352	3.274	$3 \cdot 199$	$3 \cdot 127$	3.058	2.991	5
6	4.231	4.111	3.998	3.889	3.784	3.685	3.589	3.498	$3 \cdot 410$	3.326	6
7	$4 \cdot 712$	4.564	$4 \cdot 423$	4.288	$4 \cdot 160$	4.039	3.922	3.812	$3 \cdot 706$	3.605	7
8	$5 \cdot 146$	4.968	4.799	4.639	4.487	4.344	$4 \cdot 207$	$4 \cdot 078$	3.954	3.837	8
9	5.537	$5 \cdot 328$	$5 \cdot 132$	4.946	$4 \cdot 772$	4.607	$4 \cdot 451$	4.303	$4 \cdot 163$	4.031	9
10	$5 \cdot 889$	$5 \cdot 650$	$5 \cdot 426$	$5 \cdot 216$	5.019	4.833	4.659	$4 \cdot 494$	$4 \cdot 339$	$4 \cdot 192$	10
11	$6 \cdot 207$	5.938	5.687	$5 \cdot 453$	$5 \cdot 234$	5.029	4.836	$4 \cdot 656$	$4 \cdot 486$	4.327	11
12	6.492	$6 \cdot 194$	5.918	$5 \cdot 660$	5.421	5.197	4.988	$4 \cdot 793$	$4 \cdot 611$	4.439	12
13	6.750	$6 \cdot 424$	$6 \cdot 122$	5.842	5.583	$5 \cdot 342$	$5 \cdot 118$	4.910	$4 \cdot 715$	4.533	13
14	6.982	6.628	$6 \cdot 302$	6.002	$5 \cdot 724$	$5 \cdot 468$	$5 \cdot 229$	5.008	4.802	4.611	14
15	$7 \cdot 191$	$6 \cdot 811$	$6 \cdot 462$	$6 \cdot 142$	5.847	$5 \cdot 575$	$5 \cdot 324$	5.092	$4 \cdot 876$	$4 \cdot 675$	15

Standard normal distribution table

	$0 \cdot 00$	0.01	$0 \cdot 02$	0.03	0.04	0.05	0.06	0.07	0.08	0.09
$0 \cdot 0$	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
$0 \cdot 1$	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
$0 \cdot 2$	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	$0 \cdot 1026$	$0 \cdot 1064$	$0 \cdot 1103$	0.1141
$0 \cdot 3$	0.1179	0.1217	$0 \cdot 1255$	$0 \cdot 1293$	$0 \cdot 1331$	$0 \cdot 1368$	$0 \cdot 1406$	0.1443	$0 \cdot 1480$	$0 \cdot 1517$
$0 \cdot 4$	$0 \cdot 1554$	$0 \cdot 1591$	$0 \cdot 1628$	$0 \cdot 1664$	$0 \cdot 1700$	$0 \cdot 1736$	$0 \cdot 1772$	$0 \cdot 1808$	$0 \cdot 1844$	$0 \cdot 1879$
0.5	$0 \cdot 1915$	$0 \cdot 1950$	$0 \cdot 1985$	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
$0 \cdot 6$	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	$0 \cdot 2881$	0.2910	0.2939	0.2967	0.2995	$0 \cdot 3023$	0.3051	$0 \cdot 3078$	0.3106	0.3133
0.9	$0 \cdot 3159$	0.3186	0.3212	0.3238	0.3264	$0 \cdot 3289$	0.3315	$0 \cdot 3340$	$0 \cdot 3365$	0.3389
1.0	$0 \cdot 3413$	$0 \cdot 3438$	0.3461	$0 \cdot 3485$	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
$1 \cdot 1$	$0 \cdot 3643$	$0 \cdot 3665$	0.3686	$0 \cdot 3708$	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
$1 \cdot 2$	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	$0 \cdot 4222$	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
$2 \cdot 1$	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
$2 \cdot 2$	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
$2 \cdot 3$	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
$2 \cdot 4$	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
$2 \cdot 6$	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
$2 \cdot 7$	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
$2 \cdot 8$	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
$2 \cdot 9$	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

This table can be used to calculate $N(d)$, the cumulative normal distribution functions needed for the Black-Scholes model of option pricing. If $d_{i}>0$, add 0.5 to the relevant number above. If $d_{i}<0$, subtract the relevant number above from 0.5 .

End of Question Paper

