[ENG18]

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BSc (Hons) MATHEMATICS

SEMESTER 2 EXAMINATIONS 2021/22

GROUP THEORY

MODULE NO: MMA6005

Date: Thursday 19th May 2022 Time: 14.00 - 16.15

INSTRUCTIONS TO CANDIDATES:

- 1. Please attempt all FOUR questions.
- All questions carry equal 2. marks.
- Maximum marks for each 3. part/question are shown in brackets.

- 1. (a) State, with reasons, whether or not each of the following groups is simple:
 - (i) \boldsymbol{Z}_{11} (ii) $\boldsymbol{Z}_7 \times \boldsymbol{Z}_{11}$

(5 marks)

(b) Calculate the order of the symmetric group S_6 of permutations of a six element set.

Find the number of elements of type (abc)(de) in S_6 .

Find the centraliser of the permuation (125)(34) in S_6 .

Hence find the size of the conjugacy class of (125)(34) in S_6 .

(11 marks)

(c) Explain why the order of the general linear group $GL(3, \mathbb{Z}_n)$ is

$$(p^3-1)(p^3-p)(p^3-p^2)$$

Find a formula for the order of $SL(3, \mathbb{Z}_p)$, and calculate the order of SL(3, 5).

(9 marks)

2. (a) Find *two* composition series for the group Z_{28} .

In each case, state the composition factors.

State, with reasons, whether or not Z_{28} is soluble.

(8 marks)

(b) Suppose that M and N are normal subgroups of a group G.

Let $MN = \{ab : a \in M, b \in N\}.$

Show that MN is a subgroup of G, and furthermore that it is a normal subgroup of G. (10 marks)

(c) Find a composition series for the symmetric group S_6 , and state the composition factors.

Explain carefully whether or not S_6 is a soluble group.

(7 marks)

Please turn the page

School of Engineering Bsc (Hons) Mathematics Semester 2 Examinations 2021/22 MMA6005: Group Theory-PAST EXAMINATION PAPER

$$a \sqrt{1 + \sqrt[4]{2}}$$
 over **Q**.

3. (a) Find the minimal polynomial of = State the degree of a over Q.

(5 marks)

(b) Suppose that *E* is an extension field of *F*.

State what it means for *E* to be an *algebraic extension* of *F*, and for *E* to be a *finite extension*.

Show that if E is a finite extension of F then E is an algebraic extension of F.

(10 marks)

(c) List the 8th roots of unity. State which of these are primitive 8th roots of unity.

Let ω be a primitive 8th root of unity.

Find the minimal polynomial for ω and hence find a basis for the extension field $Q(\omega)$ as a vector space over Q.

(10 marks)

Please turn the page

School of Engineering Bsc (Hons) Mathematics Semester 2 Examinations 2021/22 MMA6005: Group Theory - PAST EXAMINATION PAPER

4. (a) Using Eisenstein's criterion, show that the polynomial

$$f(x) = x^5 - 6x^3 - 21x + 12$$

is irreducible over **Q**.

(4 marks)

(b) Let *E* be the splitting field of the polynomial f(x) of part (a).

Let *G* be the Galois group G = Gal(E/Q), and *a* a root of f(x).

State the degree of *a*.

Show that if $\sigma \in Gal(E/Q)$ then $\sigma(a)$ is also a root of f(x).

(8 marks)

(c) Explain why the Galois group G of part (b) must have a subgroup of order 5.

(6 marks)

(d) Show that the cycle $(1 \ 2 \ 3 \ 4 \ 5)$ and the transposition $(1 \ 2)$ generate the group S_5 .

(7 marks)

END OF QUESTIONS