UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2021/2022

GROUND AND WATER II

MODULE NO: CIE5005

Date: Tuesday $17^{\text {th }}$ May 2022

INSTRUCTIONS TO CANDIDATES:

Time: 14:00-17:00

There are TWO Sections; A and B.
You will be supplied with TWO Answer Booklets by the Invigilator. Answer
Section A in ONE Answer Booklet, and Section B in the other.

Section A: Q1 to Q4 (Answer THREE Questions from four).

Section B: Q5 to Q7 (Answer TWO Questions from three).

Formulae and Definitions are provided.
Lined Graph Paper and Supplementary Answer Sheets are available for your use.

Ensure that you write your Candidate Number or Desk Number on each Figure, Supplementary Sheet or Sheet of Graph Paper you use to answer the selected questions.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

School of Engineering
BEng (Hons) Civil Engineering
Semester Two Examination 2021/2022
Ground and Water II
Module No. CIE5005

SECTION A - ANSWER ANY THREE QUESTIONS (from Q1 to Q4)

Question 1:

Three pipes are connected in series to transmit the water between the two reservoirs (A and B) (Figure Q1). The diameters of the three pipes are $250 \mathrm{~mm}, 150 \mathrm{~mm}$, and 350 mm , respectively. The corresponding lengths of the pipes are $400 \mathrm{~m}, 300 \mathrm{~m}$, and 350 m . The discharge flowing in the pipes is $0.15 \mathrm{~m}^{3} / \mathrm{s}$. The friction factor (f) of the three pipes is 0.024 . Assume sharp-edged entrance from reservoir A into pipe 1 ($k=0.5$), sudden contraction between pipe 1 and $2(k=0.25)$, sudden expansion between pipe 2 and $3(k=0.1)$, and exit into reservoir $\mathrm{B}(k=1)$.

Determine the following:
(a) Total friction losses in the three pipes
(b) Total minor losses in the pipeline
(c) Difference between the water surfaces in the two reservoirs (H)

Total 20 marks

Figure Q1

School of Engineering
BEng (Hons) Civil Engineering
Semester Two Examination 2021/2022
Ground and Water II
Module No. CIE5005

Question 2:

Branching in pipes occur when water is brought by pipes to a junction when more than two pipes meet.
(a) Briefly discuss the principles need to be satisfied in order to find flows and pressure at the junction for such piping systems.
(5 marks)
(b) Figure Q2 shows a typical three-reservoirs system. Determine the flow in pipe BJ \& pipe CJ and the water elevation in tank C. Take fixed value for the friction factor, $f=0.025$ for all pipes. Neglect the minor losses.

Total 20 marks

$\mathrm{L3}=800 \mathrm{~m}, \mathrm{~d} 3=30 \mathrm{~cm}$

Figure Q2

School of Engineering
BEng (Hons) Civil Engineering
Semester Two Examination 2021/2022
Ground and Water II
Module No. CIE5005

Question 3:

For the ring main pipe network shown in Figure Q3 and data in Table Q3.1:
(a) Use Hardy Cross method, Darcy-Weisbach formula for pipe head loss and a fixed friction factor, $f=0.016$ for all pipes, find the discharges in each pipes (Make at least three iterations; use a table similar to Table Q3.2).
(15 marks)
(b) Find the pressure head at point B; C, and D, if the pressure at A is 30 m of water and A, B, C and D have the same elevation.

Total 20 marks

Table Q3.1

Pipe	AB	BC	AC	CD	AD
Length (m)	1000	1000	1414	1000	1000
Diameter (mm)	150	200	200	300	200

Figure Q3

School of Engineering
BEng (Hons) Civil Engineering
Semester Two Examination 2021/2022
Ground and Water II
Module No. CIE5005

1st Trial	Loop 1							Loop 2						
	Pipe	L (m)	D (mm)	K	Q (m ${ }^{3} / \mathrm{sec}$)	$h_{f}(m)$	h_{f} / Q	Pipe	L (m)	D (mm)	K	$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	$h_{f}(m)$	h_{f} / Q
	AB	1000	150					AC	1414	200				
	BC	1000	200					CD	1000	200				
	CA	1414	200					DA	1000	300				
					Σ							Σ		
						$\Delta \mathrm{Q}$							$\Delta \mathrm{Q}$	
2nd Trial	Pipe	L (m)	D (mm)	K	Q ($\mathrm{m}^{3} / \mathrm{sec}$)	$h_{f}(m)$	h_{f} / Q	Pipe	L (m)	D (mm)	K	Q (m ${ }^{3} / \mathrm{sec}$)	$h_{f}(m)$	h_{f} / Q
	AB	1000	150					AC	1414	200				
	BC	1000	200					CD	1000	200				
	CA	1414	200					DA	1000	300				
					Σ							Σ		
						$\Delta \mathrm{Q}$							$\Delta \mathrm{Q}$	
3rd Trial	Pipe	L (m)	D (mm)	K	Q (m ${ }^{3} / \mathrm{sec}$)	$h_{f}(m)$	h_{f} / Q	Pipe	L (m)	D (mm)	K	Q (m ${ }^{3} / \mathrm{sec}$)	$h_{f}(m)$	h_{f} / Q
	AB	1000	150					AC	1414	200				
	BC	1000	200					CD	1000	200				
	CA	1414	200					DA	1000	300				
					Σ							Σ		
						$\Delta \mathrm{Q}$							$\Delta \mathrm{Q}$	

Candidate Number:
PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2021/2022
Ground and Water II
Module No. CIE5005

Question 4:

a) Explain what you understand by time of entry, time of flow and time of concentration in storm sewer design. Why is the duration of the design storm in the Rational Method taken as the time of concentration?
b) A small separate storm sewer network has the characteristics presented in Table Q4 and Figure Q4. Assume sewer gradient are fixed.

Table Q4

Sewer	Length $\mathbf{(m)}$	Sewer Gradient $(\mathbf{1}: \mathbf{x})$	Contributing Area $(\mathbf{h a)}$
1.0	180	200	0.35
2.0	90	200	0.65
3.0	90	200	0.90
1.1	90	500	0.50

Design the network using the Rational Method for a 1-year return period storm using a runoff coefficient of 0.85 and a time of entry 4 min . Take pipe roughness, $\mathbf{k s}_{\mathbf{s}}$, as $\mathbf{1 . 5 \mathbf { ~ m m } \text { . Use the 'Ministry of Health' formulae to determine the design }}$ rainfall intensities.
(15 marks)

Figure Q4

SECTION B - Answer ANY TWO questions (from Q5 to Q7)

5. a) A quick 'UU' triaxial compression test is to be carried out on a cylindrical clay sample. Show how Mohr's stress circles will be used to characterise the clay behaviour. Ensure that you label all axes and key points on the Mohr's stress circles you sketch. Also sketch the cylinder of clay showing the direction of all key stresses involved on key planes.
b) A series of 'quick' unconsolidated undrained triaxial tests were conducted on a sample of clay with the results obtained being as follows:

Test Number	1	2	3
Cell Pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	50	100	200
Vertical Stress at Failure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	202	256	453

Using Figure Q5 (Page 8), or Graph Paper, and constructing Mohr's stress circles, determine the shear strength parameters of the soil sample. Use these values to describe the clay soil in geotechnical terms.
(8 marks)
c) State two shear strength testing methods available for clays in both the field and in the laboratory, briefly describing their limitations and advantages
(4 marks)
d) Explain what you would expect to occur when carrying out a shear box test on a very dense sand, using sketch diagrams, as appropriate, to explain why this behaviour is expected.

Total 20 marks

Seat / Candidate Number :

Figure Q5
6. a) A flexible foundation of length $6 m$ and breadth $4 m$ is to exert a uniform pressure of $150 \mathrm{kN} / \mathrm{m}^{2}$ on the surface of an 8 m layer of soil. Using Figure Q6a, determine the immediate settlement under the centre of the foundation if the elastic soil stiffness (E) is assumed to be $2.5 \mathrm{MN} / \mathrm{m}^{2}$.
b) A flexible foundation of length 6 m and breadth 4 m is to exert a uniform pressure of $150 \mathrm{kN} / \mathrm{m}^{2}$ on the surface of a layer of soil of assumed infinite thickness. Using Figure Q6b, determine the total stress at a depth of 3 m beneath a corner of the foundation.
c) The following results were obtained from an oedometer test on a specimen of saturated clay:

Applied Stress (kN/m²)	0	25	50	100	200	400	800
Void Ratio	0.968	0.933	0.894	0.863	0.816	0.767	0.721

i) Determine the value of m_{v} for an effective stress range from $40 \mathrm{kN} / \mathrm{m}^{2}$ to $190 \mathrm{kN} / \mathrm{m}^{2}$.
(6 marks)
ii) Calculate the consolidation settlement for a 5 m thick layer of this clay, when the effective stress changes from $40 \mathrm{kN} / \mathrm{m}^{2}$ to $190 \mathrm{kN} / \mathrm{m}^{2}$.

Question 6 continued....

Figure Q6a

Question 6 continues over the page....
PLEASE TURN THE PAGE....

Question 6 continued....

Influence factor I

Fig Q6b

PLEASE TURN THE PAGE....
7. a) Describe how an "excess pore water pressure" is generated in a soil situated beneath a proposed wide embankment. Explain the type of soil that would need to be present for an excess pore water pressure to be generated, and then describe in geotechnical detail the process of consolidation that occurs.
b) Using Figure Q7 determine the total stress, pore water pressure and effective stress at each strata change and at the location of the water table and hence plot a graph to illustrate their variation with depth from ground surface to a depth of 10 m below ground level. The water table is located at a depth of 3 m below ground level within a 5 m thick deposit of sandy gravel overlying 5 m of clay.

NOTE: Assume that Unit Weight of Water $=10 \mathrm{kN} / \mathrm{m}^{3}$

Figure Q7

END OF QUESTIONS

Geotechnical Formulae

$$
\begin{array}{ll}
\rho_{\mathrm{i}}=\frac{\mathrm{qB}}{\mathrm{E}_{\mathrm{u}}} \cdot \mathrm{I} \\
\Delta \mathrm{e}=\frac{\Delta \mathrm{H}}{\mathrm{H}} \cdot\left(1+\mathrm{e}_{\mathrm{o}}\right) & \mathrm{m}_{\mathrm{v}}=\frac{\Delta \mathrm{e}}{\Delta \sigma} \cdot \frac{(1)}{\left(1+\mathrm{e}_{o}\right)} \\
\sigma_{\mathrm{v}}{ }^{\prime}=\sigma_{\mathrm{v}}-\mathrm{u} & \Delta \mathrm{H}=\mathrm{m}_{\mathrm{v}} \Delta \sigma_{\mathrm{v}}{ }^{\prime} \mathrm{H} \\
\sigma_{\mathrm{v}}=\mathrm{q} I
\end{array}
$$

Principles of Flow in Pipes

Reynold Number: $\boldsymbol{R}_{e}=\frac{\rho V D}{\mu}=\frac{V D}{v}$
Darcy-Weisbach: $\boldsymbol{h}_{f}=\frac{f L}{D} \frac{V^{2}}{2 g}=\left(\frac{8 f l}{\pi^{2} g D^{5}}\right) Q^{2}$
Hazen-Williams: $\boldsymbol{h}_{f}=\frac{10.7 L}{C_{H W}^{1.852} D^{4.87}} Q^{1.852}=\left(\frac{10.7 L}{C_{H W}^{1.852} D^{4.87}}\right) Q^{1.852}$
Modified Darcy-Weisbach : $H_{f}=\left(\frac{f L}{D}+\sum K\right) \frac{V^{2}}{2 g}=\left(\frac{8 f l}{\pi^{2} g D^{5}}+\frac{8 \sum K}{\pi^{2} g D^{4}}\right) Q^{2}$
Hagen-Poiseuille: $h_{f}=\frac{32 \mu L V}{\rho g D^{2}}$

Colebrook-White: $\frac{1}{\sqrt{f}}=-2.0 \log \left(\frac{k}{3.7 D}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)$

Swamme-Jain: $\frac{1}{\sqrt{f}}=-2 \log \left(\frac{k}{3.7 D}+\frac{5.74}{R e^{0.9}}\right)$

Barr: $\frac{1}{\sqrt{f}}=-2 \log \left(\frac{k}{3.7 D}+\frac{5.1286}{R e^{0.89}}\right)$
Combination of the Colebrook-White and the Darcy-Weisbach equations:

$$
Q=-2 A \sqrt{2 g D \frac{h_{f}}{L}} \log \left(\frac{k}{3.7 D}+\frac{2.51 v}{D \sqrt{2 g D \frac{h_{f}}{L}}}\right)
$$

Local Head Loss: $\boldsymbol{h}_{l}=K \frac{V^{2}}{2 g}$
Borda-Caront head losses equation for sudden expansions: $\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}$

Hardy-Cross Head-Balance Correction: $\Delta Q=-\frac{\sum H_{l_{0, \mathrm{i}}}}{2 \sum \frac{H_{l_{0, \mathrm{i}}}}{Q_{0, \mathrm{i}}}}$
Cornish Quantity-Balance (Nodal) Correction: $\Delta \boldsymbol{Z}=\frac{2\left[\sum Q_{0, \mathrm{i}}-F\right]}{\sum \frac{Q_{0, \mathrm{i}}}{H_{l_{0, \mathrm{i}}}}}$

Design of Foul Sewer System

Dry Weather Flow (DWF): $\mathbf{D W F}=\mathrm{PG}+\mathrm{I}+\mathrm{E}$
Manning's formula for velocity: $V=\frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$

Recommended values of sewer wall roughness:

Type of conduit	White-Colebrook (mm)	Manning $\left(\mathrm{m}^{1 / 3} / \mathrm{s}\right)$
Street sewers, storm water culverts, properly constructed	1.5	0.013
Old sewers and concrete culverts		0.017
main sewers	1.0	0.0125
pumping lines	0.4	0.011

Design of Storm Sewer System

Time of Concentration: $t_{c}=t_{e}+t_{f}$

Rational Formula (Lloyd-Davies, 1946): $Q_{p}=2.78 \mathrm{CiA}$

Ministry of Health Formulae (1930) for Rainfall Intensity:
$i=\frac{750}{D+10}$ For storms beteen 5 and 20 min duraton
$i=\frac{1000}{D+20} \quad$ For storms beteen 20 and 120 min duraton

Bilham's Formula (1938) for Rainfall Intensity:
$i=\frac{60}{D} *\left[\left(T * D * 2.022 \times 10^{2}\right)^{0.2817}-2.54\right]$

Pumps:

Manometric head/discharge relationship: $H p=A Q^{2}+B Q+C$
For n identical pumps in series: $H_{n p}=n H_{p}=n\left[A Q^{2}+B Q+C\right]$, with $Q_{n p}=Q$
For n identical pumps in parallel: $H_{n p}=H_{p}=A\left(\frac{Q_{n p}}{n}\right)^{2}+B\left(\frac{Q_{n p}}{n}\right)+C$, with $Q_{n p}=$ $n Q$
For variable speed pumps: $\frac{Q}{Q_{1}}=\frac{N}{N_{1}}$ and $\frac{H_{p}}{H_{p_{1}}}=\left(\frac{N}{N_{1}}\right)^{2}$

Principles of Flow in Open Channels

Saint-Venant equations for open channel flow:
$\frac{\partial y}{\partial t}+D \frac{\partial V}{\partial x}+V \frac{\partial y}{\partial x}=0 ; \frac{1}{g} \frac{\partial V}{\partial t}+\frac{V}{g} \frac{\partial V}{\partial x}+\frac{\partial y}{\partial x}=S_{0}-S_{f}$

Alternate Depth Relations for rectangular channels:

$\left(y_{2}-y_{1}\right)=\frac{q^{2}}{2 g}\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right)=\frac{y_{c}^{3}}{2}\left(\frac{1}{y_{1}^{2}}-\frac{1}{y_{2}^{2}}\right) ;\left(Y_{2}+Y_{1}\right)=2 Y_{1}^{2} Y_{2}^{2} ;$ where $Y=\frac{y}{y_{c}}$

Sequent (Conjugate) Depth Relations for a Hydraulic Jump in a horizontal rectangular channels:
$Y_{1} Y_{2}\left(Y_{1}+Y_{2}\right)=2 ; Y=\frac{y}{y_{c}} ;\left(\frac{y_{1}}{y_{2}}\right)=\frac{\sqrt{1+8 F r_{2}^{2}}-1}{2} ;\left(\frac{y_{2}}{y_{1}}\right)=\frac{\sqrt{1+8 F r_{1}^{2}}-1}{2} ; F r=\frac{V}{\sqrt{g y}}$
Energy Head loss at the Hydraulic Jump $=E_{1}-E_{2}=\frac{\left(y_{2}-y_{1}\right)^{3}}{4 y_{1} y_{2}}$
The power dissipated by the hydraulic jump $P=\rho g Q\left(E_{1}-E_{2}\right)=\frac{\rho g Q\left(y_{2}-y_{1}\right)^{3}}{4 y_{1} y_{2}}$
PLEASE TURN THE PAGE....

Steady Uniform flow Equations: Chezy $V=C \sqrt{R S_{0}}$; Manning: $V=\frac{1}{n} R^{2 / 3} S_{0}^{1 / 2}$

Equivalent (Composite) Manning Roughness Coefficient:

Lotter: $n_{e}=\frac{P R^{\frac{5}{3}}}{\sum_{i=1}^{N} \frac{P_{i} R_{i}^{\frac{5}{3}}}{n_{i}}}$ Horton-Einstein: $\boldsymbol{n}_{\boldsymbol{e}}=\left(\frac{\sum_{i=1}^{N} P_{i} n_{i}^{\frac{3}{2}}}{P}\right)^{\frac{2}{3}} \quad$ Pavlovskij $\boldsymbol{n}_{e}=\left(\frac{\sum_{i=1}^{N} P_{i} n_{i}^{2}}{P}\right)^{\frac{1}{2}}$

Compound Channel Sections:

$$
\begin{array}{ll}
Q=\left(\sum_{i=1}^{N} K_{i}\right) S_{0}^{\frac{1}{2}} ; & \text { where } K_{i}=\frac{A_{i} R_{i}^{\frac{2}{3}}}{n_{i}} \\
\alpha=\frac{\sum_{i=1}^{N} V_{i}^{3} A_{i}}{V^{3} A}=\frac{\left(\sum_{i=1}^{N} A_{i}\right)^{2}}{\left(\sum_{i=1}^{N} K_{i}\right)^{3}} \sum_{i=1}^{N} \frac{K_{i}^{3}}{A_{i}^{2}} & \beta=\frac{\sum_{i=1}^{N} A_{i} V_{i}^{2}}{V^{2} A}=\frac{\sum_{i=1}^{N} A_{i}}{\left(\sum_{i=1}^{N} K_{i}\right)^{2}} \sum_{i=1}^{N} \frac{K_{i}^{2}}{A_{i}} ;
\end{array}
$$

Surface Profile Equation for steady gradually varied flow in prismatic channels:

$$
\frac{d y}{d x}=\frac{S_{0}-S_{f}}{1-\frac{\alpha T Q^{2}}{g A^{3}}}=\frac{S_{0}-S_{f}}{1-F r^{2}}
$$

PLEASE TURN THE PAGE....
$\mathrm{ks}=1.500 \mathrm{~mm}$
$i=0.00015$ to 0.004
ie hydraulic gradient =
1 in 6667 to 1 in 250

Water (or sewage) at $15^{\circ} \mathrm{C}$
full bore conditions.
velocities in m/s
discharges in 1/s

Gradient

Pipe diameters in mm:											
		80	100	125	150	175	200	225	250	275	300
0.108	0.145	0.152	0.178	0.208	0.236	0.262	0.286	0.310	0.333	0.354	0.375
0.212	0.641	0.764	1.397	2.550	4.163	6.295	8.999	12.327	16.329	21.051	26.539
0.112	0.150	0.157	0.184	0.215	0.244	0.270	0.296	0.320	0.344	0.366	0.388
0.219	0.663	0.790	1.444	2.636	4.303	6.505	9.299	12.739	16.873	21.752	27.422
0.115	0.155	0.162	0.190	0.222	0.251	0.279	0.305	0.330	0.354	0.378	0.400
0.226	0.684	0.815	1.490	2.719	4.438	6.710	9.591	13.137	17.401	22.432	28.278
0.119	0.159	0.167	0.195	0.228	0.259	0.287	0.314	0.340	0.365	0.389	0.412
0.233	0.704	0.839	1.534	2.800	4.570	6.908	9.874	13.524	17.913	23.092	29.109
0.122	0.164	0.172	0.201	0.235	0.266	0.295	0.323	0.350	0.375	0.400	0.423
0.240	0.724	0.863	1.578	2.879	4.698	7.101	10.149	13.901	18.412	23.734	29.918
0.125	0.168	0.176	0.206	0.241	0.273	0.303	0.332	0.359	0.385	0.410	0.434
0.246	0.744	0.886	1.620	2.955	4.822	7.289	10.417	14.268	18.897	24.359	30.705
0.132	0.177	0.185	0.217	0.253	0.286	0.318	0.348	0.377	0.404	0.430	0.456
0.259	0.781	0.930	1.701	3.102	5.062	7.651	10.934	14.975	19.833	25.564	32.223
0.138	0.185	0.194	0.226	0.264	0.299	0.332	0.364	0.394	0.422	0.450	0.476
0.271	0.817	0.973	1.778	3.243	5.292	7.997	11.428	15.651	20.727	26.715	33.674
0.144	0.193	0.202	0.236	0.275	0.312	0.346	0.379	0.410	0.440	0.468	0.496
0.282	0.851	1.014	1.853	3.379	5.512	8.329	11.902	16.299	21.584	27.820	35.065
0.149	0.200	0.209	0.245	0.286	0.324	0.360	0.393	0.426	0.457	0.486	0.515
0.293	0.884	1.053	1.924	3.509	5.723	8.648	12.358	16.923	22.410	28.883	36.404
0.155	0.207	0.217	0.254	0.296	0.335	0.372	0.407	0.441	0.473	0.504	0.533
0.304	0.916	1.091	1.993	3.634	5.928	8.957	12.798	17.525	23.206	29.908	37.696
0.160	0.214	0.224	0.262	0.306	0.347	0.385	0.421	0.455	0.488	0.520	0.551
0.314	0.947	1.127	2.060	3.755	6.125	9.255	13.223	18.107	23.976	30.900	38.946
0.165	0.221	0.231	0.271	0.316	0.357	0.397	0.434	0.470	0.504	0.536	0.568
0.324	0.977	1. 163	2.125	3.873	6.317	9.544	13.636	18.671	24.723	31.862	40.157
0.170	0.228	0.238	0.279	0.325	0.368	0.408	0.447	0.483	0.518	0.552	0.585
0.334	1.006	1.198	2.187	3.987	6.503	9.824	14.036	19.219	25.447	32.795	41.333
0.175	0.234	0.245	0.286	0.334	0.378	0.420	0.459	0.497	0.533	0.567	0.601
0.343	1.034	1.231	2.249	4.099	6.684	10.097	14.426	19.752	26.152	33.703	42.476
0.180	0.240	0.251	0.294	0.343	0.388	0.431	0.471	0.510	0.547	0.582	0.617
0.353	1.061	1.264	2.308	4.207	6.860	10.363	14.805	20.271	26.839	34.588	43.590
0.189	0.252	0.264	0.308	0.360	0.407	0.452	0.495	0.535	0.574	0.611	0.647
0.370	1.114	1.327	2.423	4.415	7.200	10.876	15.537	21.271	28.163	36.293	45.738
0.197	0.264	0.276	0.322	0.376	0.426	0.473	0.517	0.559	0.599	0.638	0.676
0.387	1. 165	1.387	2.533	4.615	7.524	11.365	16.235	22.227	29.428	37.922	47.790
0.205	0.275	0.287	0.336	0.392	0.443	0.492	0.538	0.582	0.624	0.665	0.704
0.403	1.213	1.445	2.638	4.806	7.836	11.835	16.906	23.144	30.641	39.484	49.758
0.213	0.285	0.298	0.349	0.407	0.460	0.511	0.559	0.604	0.648	0.690	0.731
0.419	1.260	1.500	2.739	4.990	8.135	12.287	17.551	24.026	31.808	40.988	51.652
0.221	0.295	0.309	0.361	0.421	0.477	0.529	0.578	0.626	0.671	0.715	0.757
0.434	1.305	1.554	2.837	5.168	8.424	12.723	18.173	24.877	32.935	42.438	53.479
0.229	0.305	0.319	0.373	0.435	0.493	0.546	0.598	0.646	0.693	0.738	0.782
0.449	1.349	1.606	2.931	5.339	8.704	13.145	18.775	25.701	34.024	43.841	55.246
0.236	0.315	0.329	0.385	0.449	0.508	0.563	0.616	0.666	0.715	0.761	0.806
0.463	1.391	1.656	3.023	5.506	8.975	13.554	19.358	26.499	35.080	45.201	56.959
0.243	0.324	0.339	0.396	0.462	0.523	0.580	0.634	0.686	0.736	0.783	0.829
0.477	1.432	1.705	3.112	5.668	9.238	13.951	19.925	27.274	36.105	46.522	58.623
0.250	0.333	0.349	0.407	0.475	0.537	0.596	0.652	0.705	0.756	0.805	0.852
0.490	1.472	1.753	3.198	5.825	9.494	14.337	20.476	28.028	37.102	47.806	60.240

Coefficient for part-full pipes:

14	20	20	25	35	40	45	50	60	70	70	80

Water (or sewage) at $15^{\circ} \mathrm{C}$
full bore conditions.
velocities in m/s
discharges in l/s

Gradient	Pipe 50	$\begin{gathered} \text { meter } \\ 75 \end{gathered}$	$\text { in } \begin{array}{r} \mathrm{mm} \\ 80 \end{array}$	100	125	150	175	200	225	250	275	300
$\begin{array}{r} 0.00400 \\ 1 ; \quad 250 \end{array}$	$\begin{aligned} & 0.256 \\ & 0.503 \end{aligned}$	$\begin{gathered} 0.342 \\ 1.511 \end{gathered}$	$\begin{aligned} & 0.358 \\ & 1.799 \end{aligned}$	$\begin{aligned} & 0.418 \\ & 3.282 \end{aligned}$	$\begin{aligned} & 0.487 \\ & 5.978 \end{aligned}$	$\begin{aligned} & 0.551 \\ & 9.743 \end{aligned}$	$\begin{array}{r} 0.612 \\ 14.713 \end{array}$	$\begin{array}{r} 0.669 \\ 21.013 \end{array}$	$\begin{array}{r} 0.723 \\ 28.762 \end{array}$	$\begin{array}{r} 0.776 \\ 38.074 \end{array}$	$\begin{array}{r} 0.826 \\ 49.057 \end{array}$	$\begin{array}{r} 0.875 \\ 61.816 \end{array}$
$\begin{array}{r} 0.00420 \\ 1 / \quad 238 \end{array}$	0.263 0.516	0.351 1.549	0.367 1.844	0.428 3.365	$\begin{gathered} 0.499 \\ 6.127 \end{gathered}$	$\begin{aligned} & 0.565 \\ & 9.986 \end{aligned}$	$\begin{array}{r} 0.627 \\ 15.080 \end{array}$	$\begin{array}{r} 0.686 \\ 21.536 \end{array}$	$\begin{array}{r} 0.741 \\ 29.478 \end{array}$	$\begin{array}{r} 0.795 \\ 39.021 \end{array}$	0.846 50.277	$\begin{array}{r} 0.896 \\ 63.353 \end{array}$
$\begin{array}{r} 0.00440 \\ 1 ; \quad 227 \end{array}$	0.269 0.528	0.359 1.586	0.376 1.888	$\begin{aligned} & 0.439 \\ & 3.445 \end{aligned}$	$\begin{aligned} & 0.511 \\ & 6.273 \end{aligned}$	0.579 10.224	0.642 1.5 .438	0.702 22.047	$\begin{array}{r} 0.759 \\ 30.177 \end{array}$	$\begin{array}{r} 0.814 \\ 39.946 \end{array}$	$\begin{array}{r} 0.867 \\ 51.468 \end{array}$	$\begin{array}{r} 0.917 \\ 64.854 \end{array}$
$\begin{array}{r} 0.00460 \\ 1 / \quad 217 \end{array}$	0.275 0.540	0.367 1.622	$\begin{gathered} 0.384 \\ 1.931 \end{gathered}$	$\begin{gathered} 0.449 \\ 3.523 \end{gathered}$	$\begin{aligned} & 0.523 \\ & 6.416 \end{aligned}$	$\begin{array}{r} 0.592 \\ 10.456 \end{array}$	$\begin{array}{r} 0.656 \\ 15.788 \end{array}$	0.718 22.547	$\begin{array}{r} 0.776 \\ 30.860 \end{array}$	$\begin{array}{r} 0.832 \\ 40.850 \end{array}$	$\begin{array}{r} 0.886 \\ 52.633 \end{array}$	$\begin{array}{r} 0.938 \\ 66.320 \end{array}$
$\begin{array}{r} 0.00480 \\ 1 ; \quad 208 \end{array}$	$\begin{aligned} & 0.281 \\ & 0.552 \end{aligned}$	$\begin{aligned} & 0.375 \\ & 1.658 \end{aligned}$	$\begin{gathered} 0.393 \\ 1.973 \end{gathered}$	$\begin{aligned} & 0.458 \\ & 3.600 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 6.555 \end{aligned}$	$\begin{array}{r} 0.605 \\ 10.683 \end{array}$	0.671 16.130	$\begin{array}{r} 0.733 \\ 23.035 \end{array}$	$\begin{array}{r} 0.793 \\ 31.529 \end{array}$	0.850 41.735	$\begin{array}{r} 0.905 \\ 53.773 \end{array}$	$\begin{array}{r} 0.959 \\ 67.756 \end{array}$
$\begin{array}{r} 0.00500 \\ 1 ; \quad 200 \end{array}$	0.287 0.564	0.383 1.692	$\begin{aligned} & 0.401 \\ & 2.014 \end{aligned}$	$\begin{gathered} 0.468 \\ 3.675 \end{gathered}$	$\begin{aligned} & 0.545 \\ & 6.692 \end{aligned}$	$\begin{array}{r} 0.617 \\ 10.905 \end{array}$	$\begin{array}{r} 0.685 \\ 16.466 \end{array}$	$\begin{array}{r} 0.748 \\ 23.514 \end{array}$	$\begin{array}{r} 0.809 \\ 32.184 \end{array}$	$\begin{array}{r} 0.868 \\ 42.602 \end{array}$	$\begin{array}{r} 0.924 \\ 54.889 \end{array}$	$\begin{array}{r} 0.978 \\ 69.162 \end{array}$
$\begin{array}{r} 0.00550 \\ 1 ; \quad 182 \end{array}$	$\begin{aligned} & 0.301 \\ & 0.592 \end{aligned}$	$\begin{gathered} 0.402 \\ 1.776 \end{gathered}$	$\begin{aligned} & 0.421 \\ & 2.114 \end{aligned}$	$\begin{aligned} & 0.491 \\ & 3.857 \end{aligned}$	$\begin{aligned} & 0.572 \\ & 7.022 \end{aligned}$	$\begin{array}{r} 0.648 \\ 11.443 \end{array}$	$\begin{array}{r} 0.718 \\ 17.276 \end{array}$	$\begin{array}{r} 0.785 \\ 24.671 \end{array}$	$\begin{array}{r} 0.849 \\ 33.766 \end{array}$	$\begin{array}{r} 0.911 \\ 44.695 \end{array}$	$\begin{array}{r} 0.970 \\ 57.585 \end{array}$	$\begin{array}{r} 1.026 \\ 72.558 \end{array}$
$\begin{array}{r} 0.00600 \\ 1 / \quad 167 \end{array}$	$\begin{gathered} 0.315 \\ 0.618 \end{gathered}$	$\begin{aligned} & 0.420 \\ & 1.856 \end{aligned}$	$\begin{aligned} & 0.440 \\ & 2.209 \end{aligned}$	$\begin{aligned} & 0.513 \\ & 4.030 \end{aligned}$	$\begin{aligned} & 0.598 \\ & 7.337 \end{aligned}$	$\begin{array}{r} 0.677 \\ 11.956 \end{array}$	$\begin{array}{r} 0.750 \\ 18.051 \end{array}$	$\begin{array}{r} 0.820 \\ 25.776 \end{array}$	$\begin{array}{r} 0.887 \\ 35.278 \end{array}$	$\begin{array}{r} 0.951 \\ 46.695 \end{array}$	$\begin{array}{r} 1.013 \\ 60.161 \end{array}$	$\begin{array}{r} 1.072 \\ 75.802 \end{array}$
$\begin{aligned} & 0.00650 \\ & 1 / \quad 154 \end{aligned}$	$\begin{gathered} 0.328 \\ 0.644 \end{gathered}$	$\begin{gathered} 0.438 \\ 1.933 \end{gathered}$	$\begin{aligned} & 0.458 \\ & 2.301 \end{aligned}$	$\begin{aligned} & 0.534 \\ & 4.197 \end{aligned}$	$\begin{aligned} & 0.623 \\ & 7.640 \end{aligned}$	$\begin{array}{r} 0.704 \\ 12.448 \end{array}$	$\begin{array}{r} 0.781 \\ 18.794 \end{array}$	$\begin{array}{r} 0.854 \\ 26.836 \end{array}$	$\begin{array}{r} 0.924 \\ 36.728 \end{array}$	$\begin{array}{r} 0.990 \\ 48.614 \end{array}$	$\begin{array}{r} 1.054 \\ 62.632 \end{array}$	$\begin{array}{r} 1.116 \\ 78.915 \end{array}$
$\begin{array}{r} 0.00700 \\ 1 ; \quad 143 \end{array}$	$\begin{gathered} 0.341 \\ 0.669 \end{gathered}$	$\begin{aligned} & 0.454 \\ & 2.007 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 2.389 \end{aligned}$	$\begin{aligned} & 0.555 \\ & 4.357 \end{aligned}$	$\begin{aligned} & 0.646 \\ & 7.931 \end{aligned}$	$\begin{array}{r} 0.731 \\ 12.922 \end{array}$	$\begin{array}{r} 0.811 \\ 19.508 \end{array}$	$\begin{array}{r} 0.887 \\ 27.856 \end{array}$	$\begin{array}{r} 0.959 \\ 38.123 \end{array}$	$\begin{array}{r} 1.028 \\ 50.460 \end{array}$	$\begin{array}{r} 1.095 \\ 65.009 \end{array}$	$\begin{array}{r} 1.159 \\ 81.910 \end{array}$
$\begin{array}{r} 0.00750 \\ 1 ; \quad 133 \end{array}$	$\begin{aligned} & 0.353 \\ & 0.693 \end{aligned}$	$\begin{aligned} & 0.470 \\ & 2.078 \end{aligned}$	$\begin{aligned} & 0.492 \\ & 2.474 \end{aligned}$	$\begin{aligned} & 0.574 \\ & 4.511 \end{aligned}$	$\begin{gathered} 0.669 \\ 8.212 \end{gathered}$	$\begin{array}{r} 0.757 \\ 13.379 \end{array}$	$\begin{array}{r} 0.840 \\ 20.198 \end{array}$	$\begin{array}{r} 0.918 \\ 28.840 \end{array}$	$\begin{array}{r} 0.993 \\ 39.470 \end{array}$	$\begin{array}{r} 1.064 \\ 52.241 \end{array}$	$\begin{array}{r} 1.133 \\ 67.303 \end{array}$	$\begin{array}{r} 1.200 \\ 84.799 \end{array}$
$\begin{array}{r} 0.00800 \\ 1 ; \quad 125 \end{array}$	$\begin{gathered} 0.365 \\ 0.716 \end{gathered}$	$\begin{aligned} & 0.486 \\ & 2.147 \end{aligned}$	$\begin{aligned} & 0.508 \\ & 2.556 \end{aligned}$	$\begin{aligned} & 0.593 \\ & 4.661 \end{aligned}$	$\begin{aligned} & 0.691 \\ & 8.484 \end{aligned}$	$\begin{array}{r} 0.782 \\ 13.822 \end{array}$	$\begin{array}{r} 0.867 \\ 20.865 \end{array}$	$\begin{array}{r} 0.948 \\ 29.792 \end{array}$	$\begin{array}{r} 1.025 \\ 40.772 \end{array}$	$\begin{array}{r} 1.099 \\ 53.964 \end{array}$	$\begin{array}{r} 1.170 \\ 69.522 \end{array}$	$\begin{array}{r} 1.239 \\ 87.594 \end{array}$
$\begin{array}{r} 0.00850 \\ 1 / \quad 118 \end{array}$	$\begin{aligned} & 0.376 \\ & 0.738 \end{aligned}$	$\begin{aligned} & 0.501 \\ & 2.214 \end{aligned}$	$\begin{aligned} & 0.524 \\ & 2.635 \end{aligned}$	$\begin{aligned} & 0.612 \\ & 4.806 \end{aligned}$	$\begin{aligned} & 0.713 \\ & 8.747 \end{aligned}$	$\begin{array}{r} 0.806 \\ 14.250 \end{array}$	$\begin{array}{r} 0.894 \\ 21.512 \end{array}$	$\begin{array}{r} 0.978 \\ 30.715 \end{array}$	$\begin{array}{r} 1.057 \\ 42.034 \end{array}$	$\begin{array}{r} 1.133 \\ 55.634 \end{array}$	$\begin{array}{r} 1.207 \\ 71.673 \end{array}$	$\begin{array}{r} 1.278 \\ 90.303 \end{array}$
$\begin{array}{r} 0.00900 \\ 1 / \quad 111 \end{array}$	$\begin{aligned} & 0.387 \\ & 0.760 \end{aligned}$	$\begin{aligned} & 0.516 \\ & 2.279 \end{aligned}$	$\begin{aligned} & 0.540 \\ & 2.712 \end{aligned}$	$\begin{aligned} & 0.630 \\ & 4.946 \end{aligned}$	$\begin{aligned} & 0.734 \\ & 9.002 \end{aligned}$	$\begin{array}{r} 0.830 \\ 14.666 \end{array}$	$\begin{array}{r} 0.920 \\ 22.139 \end{array}$	$\begin{array}{r} 1.006 \\ 31.611 \end{array}$	$\begin{array}{r} 1.088 \\ 43.259 \end{array}$	$\begin{array}{r} 1.166 \\ 57.255 \end{array}$	$\begin{array}{r} 1.242 \\ 73.761 \end{array}$	$\begin{array}{r} 1.315 \\ 92.933 \end{array}$
$\begin{array}{r} 0.00950 \\ 1 / \quad 105 \end{array}$	$\begin{aligned} & 0.398 \\ & 0.781 \end{aligned}$	$\begin{gathered} 0.530 \\ 2.342 \end{gathered}$	$\begin{aligned} & 0.555 \\ & 2.788 \end{aligned}$	$\begin{aligned} & 0.647 \\ & 5.083 \end{aligned}$	$\begin{aligned} & 0.754 \\ & 9.251 \end{aligned}$	$\begin{array}{r} 0.853 \\ 15.071 \end{array}$	0.946 22.750	$\begin{array}{r} 1.034 \\ 32.482 \end{array}$	$\begin{array}{r} 1.118 \\ 44.451 \end{array}$	$\begin{array}{r} 1.199 \\ 58.832 \end{array}$	$\begin{array}{r} 1.276 \\ 75.792 \end{array}$	$\begin{array}{r} 1.351 \\ 95.491 \end{array}$
$\begin{array}{r} 0.01000 \\ 1 / 100 \end{array}$	$\begin{gathered} 0.408 \\ 0.802 \end{gathered}$	$\begin{aligned} & 0.544 \\ & 2.404 \end{aligned}$	$\begin{aligned} & 0.569 \\ & 2.861 \end{aligned}$	$\begin{aligned} & 0.664 \\ & 5.216 \end{aligned}$	$\begin{aligned} & 0.774 \\ & 9.493 \end{aligned}$	$\begin{array}{r} 0.875 \\ 15.465 \end{array}$	$\begin{array}{r} 0.971 \\ 23.345 \end{array}$	$\begin{array}{r} 1.061 \\ 33.331 \end{array}$	$\begin{array}{r} 1.147 \\ 45.612 \end{array}$	$\begin{array}{r} 1.230 \\ 60.368 \end{array}$	$\begin{gathered} 1.309 \\ 77.770 \end{gathered}$	$\begin{array}{r} 1.386 \\ 97.983 \end{array}$
$\begin{array}{r} 0.01100 \\ 1 / \begin{array}{r} 1 \end{array} \end{array}$	$\begin{gathered} 0.429 \\ 0.841 \end{gathered}$	$\begin{gathered} 0.571 \\ 2.522 \end{gathered}$	$\begin{aligned} & 0.597 \\ & 3.002 \end{aligned}$	$\begin{aligned} & 0.697 \\ & 5.473 \end{aligned}$	$\begin{aligned} & 0.812 \\ & 9.960 \end{aligned}$	$\begin{array}{r} 0.918 \\ 16.225 \end{array}$	$\begin{array}{r} 1.018 \\ 24.491 \end{array}$	$\begin{array}{r} 1.113 \\ 34.967 \end{array}$	$\begin{array}{r} 1.203 \\ 47.850 \end{array}$	$\begin{array}{r} 1.290 \\ 63.329 \end{array}$	$\begin{array}{r} 1.374 \\ 81.583 \end{array}$	$\begin{array}{r} 1.454 \\ 102.786 \end{array}$
$\begin{array}{r} 0.01200 \\ 1 ; \quad 83 \end{array}$	$\begin{gathered} 0.448 \\ 0.879 \end{gathered}$	$\begin{aligned} & 0.597 \\ & 2.636 \end{aligned}$	$\begin{aligned} & 0.624 \\ & 3.137 \end{aligned}$	$\begin{gathered} 0.728 \\ 5.718 \end{gathered}$	$\begin{array}{r} 0.848 \\ 10.406 \end{array}$	$\begin{array}{r} 0.959 \\ 16.951 \end{array}$	$\begin{array}{r} 1.064 \\ 25.586 \end{array}$	$\begin{array}{r} 1.163 \\ 36.530 \end{array}$	$\begin{gathered} 1.257 \\ 49.988 \end{gathered}$	$\begin{array}{r} 1.348 \\ 66.158 \end{array}$	$\begin{array}{r} 1.435 \\ 85.226 \end{array}$	$\begin{array}{r} 1.519 \\ 107.375 \end{array}$
$\begin{array}{r} 0.01300 \\ 1 / 777 \end{array}$	$\begin{aligned} & 0.466 \\ & 0.916 \end{aligned}$	$\begin{aligned} & 0.621 \\ & 2.744 \end{aligned}$	$\begin{aligned} & 0.650 \\ & 3.266 \end{aligned}$	$\begin{aligned} & 0.758 \\ & 5.954 \end{aligned}$	$\begin{array}{r} 0.883 \\ 10.834 \end{array}$	$\begin{gathered} 0.999 \\ 17.648 \end{gathered}$	$\begin{gathered} 1.107 \\ 26.637 \end{gathered}$	$\begin{array}{r} 1.210 \\ 38.029 \end{array}$	$\begin{array}{r} 1.309 \\ 52.039 \end{array}$	$\begin{array}{r} 1.403 \\ 68.871 \end{array}$	$\begin{array}{r} 1.494 \\ 88.721 \end{array}$	$\begin{array}{r} 1.581 \\ 111.776 \end{array}$
$\begin{array}{r} 0.01400 \\ 1 / \quad 71 \end{array}$	$\begin{aligned} & 0.484 \\ & 0.951 \end{aligned}$	$\begin{aligned} & 0.645 \\ & 2.849 \end{aligned}$	$\begin{aligned} & 0.674 \\ & 3.390 \end{aligned}$	$\begin{gathered} 0.787 \\ 6.180 \end{gathered}$	$\begin{gathered} 0.916 \\ 11.246 \end{gathered}$	$\begin{gathered} 1.037 \\ 18.318 \end{gathered}$	$\begin{array}{r} 1.149 \\ 27.648 \end{array}$	$\begin{array}{r} 1.256 \\ 39.472 \end{array}$	$\begin{array}{r} 1.358 \\ 54.012 \end{array}$	$\begin{array}{r} 1.456 \\ 71.482 \end{array}$	$\begin{array}{r} 1.550 \\ 92.083 \end{array}$	$\begin{array}{r} 1.641 \\ 116.012 \end{array}$
$\begin{array}{r} 0.01500 \\ 1 / \quad 67 \end{array}$	$\begin{gathered} 0.501 \\ 0.984 \end{gathered}$	0.668 2.950	$\begin{aligned} & 0.698 \\ & 3.510 \end{aligned}$	$\begin{gathered} 0.815 \\ 6.399 \end{gathered}$	$\begin{array}{r} 0.949 \\ 11.643 \end{array}$	$\begin{array}{r} 1.073 \\ 18.964 \end{array}$	$\begin{gathered} 1.190 \\ 28.623 \end{gathered}$	$\begin{array}{r} 1.301 \\ 40.864 \end{array}$	$\begin{array}{r} 1.406 \\ 55.916 \end{array}$	$\begin{array}{r} 1.508 \\ 74.001 \end{array}$	$\begin{array}{r} 1.605 \\ 95.328 \end{array}$	$\begin{array}{r} 1.699 \\ 120.099 \end{array}$
$\begin{array}{r} 0.01600 \\ 1 / \quad 62 \end{array}$	$\begin{aligned} & 0.518 \\ & 1.017 \end{aligned}$	$\begin{aligned} & 0.690 \\ & 3.047 \end{aligned}$	$\begin{aligned} & 0.721 \\ & 3.626 \end{aligned}$	$\begin{gathered} 0.842 \\ 6.610 \end{gathered}$	$\begin{gathered} 0.980 \\ 12.027 \end{gathered}$	$\begin{array}{r} 1.109 \\ 19.590 \end{array}$	$\begin{gathered} 1.229 \\ 29.567 \end{gathered}$	$\begin{gathered} 1.344 \\ -42.210 \end{gathered}$	$\begin{array}{r} 1.453 \\ 57.758 \end{array}$	$\begin{array}{r} 1.557 \\ 76.437 \end{array}$	$\begin{array}{r} 1.658 \\ 98.466 \end{array}$	$\begin{array}{r} 1.755 \\ 124.051 \end{array}$
$\begin{array}{r} 0.01700 \\ 1 / 59 \end{array}$	$\begin{gathered} 0.534 \\ 1.049 \end{gathered}$	0.711 3.142	0.744 3.739	$\begin{aligned} & 0.868 \\ & 6.815 \end{aligned}$	1.010 12.400	$\begin{array}{r} 1.143 \\ 20.196 \end{array}$	$\begin{array}{r} 1.267 \\ 30.481 \end{array}$	$\begin{array}{r} 1.385 \\ 43.515 \end{array}$	$\begin{gathered} 1.498 \\ 59.543 \end{gathered}$	$\begin{array}{r} 1.605 \\ 78.799 \end{array}$	$\begin{gathered} 1.709 \\ 101.507 \end{gathered}$	$\begin{array}{r} 1.809 \\ 127.882 \end{array}$
$\begin{array}{r} 0.01800 \\ 1 / 56 \end{array}$	$\begin{gathered} 0.550 \\ 1.079 \end{gathered}$	$\begin{gathered} 0.732 \\ 3.234 \end{gathered}$	$\begin{gathered} 0.766 \\ 3.848 \end{gathered}$	$\begin{aligned} & 0.893 \\ & 7.014 \end{aligned}$	1.040 12.761	$\begin{array}{r} 1.176 \\ 20.784 \end{array}$	$\begin{gathered} 1.304 \\ 31.369 \end{gathered}$	$\begin{array}{r} 1.425 \\ 44.782 \end{array}$	$\begin{array}{r} 1.541 \\ 61.276 \end{array}$	1.652 81.092	1.759 104.460	$\begin{array}{r} 1.862 \\ 131.602 \end{array}$
$\begin{array}{r} 0.01900 \\ 1 / \quad 53 \end{array}$	$\begin{gathered} 0.565 \\ 1.109 \end{gathered}$	$\begin{gathered} 0.752 \\ 3.323 \end{gathered}$	0.787 3.954	0.918 7.208	1.069 13.113	1.209 21.357	1.340 32.232	1.465 46.014	$\begin{array}{r} 1.584 \\ 62.961 \end{array}$	1.697 83.322	1.807 107.332	$\begin{array}{r} 1.913 \\ 135.220 \end{array}$

Coefficient for part-full pipes:

	18	25	30	35	45	50	60	70	80	90

$k s=1.500 \mathrm{~mm}$
$i=0.004$ to 0.1
ie hydraulic gradient = 1 in 250 to 1 in 10

Water (or sewage) at $15^{\circ} \mathrm{C}$
full bore conditions.
velocities in m/s
discharges in m³/s

Gradient	Pipe diameters in mm : $350 \quad 375 \quad 400$			450	500	525	600	675	700	750	800	825
$\begin{array}{r} 0.00400 \\ 1 ; \quad 250 \end{array}$	0.967	1.012	1.055	1.139	1.219	1.257	1.370	1.477	1.511	1.579	1.645	
	0.093	0.112	0.133	0.181	0.239	0.272	0.387	0.528	0.582	0.698	0.827	0.897
$\begin{array}{r} 0.00420 \\ 1 ; \quad 238 \end{array}$	0.991	1.037	1.081	1.167	1.249	1.289	1.404	1.513	1.549	1.618	1.686	1.719
	0.095	0.115	0.136	0.186	0.245	0.279	0.397	0.542	0.596	0.715	0.848	0.919
$\begin{array}{r} 0.00440 \\ 1 ; \quad 227 \end{array}$	1.015	1.061	1.107	1. 194	1.278	1.319	1.437	1.549	1.586	1.657	1.726	1.760
	0.098	0.117	0.139	0.190	0.251	0.286	0.406	0.554	0.610	0.732	0.868	0.941
$\begin{array}{r} 0.00460 \\ 1 ; \quad 217 \end{array}$	1.038	1.085	1.132	1.221	1.307	1.349	1.469	1.584	1.621	1.694	1.765	1.800
	0.100	0.120	0.142	0.194	0.257	0.292	0.415	0.567	0.624	0.748	0.887	0.962
$\begin{array}{r} 0.00480 \\ 1 ; \quad 208 \end{array}$	1.060	1. 109	1.156	1.248	1.335	1.378	1.501	1.618	1.656	1.731	1.803	1.838
	0.102	0.122	0.145	0.198	0.262	0.298	0.424	0.579	0.637	0.765	0.906	0.983
$\begin{array}{r} 0.00500 \\ 1 ; \quad 200 \end{array}$	1.082	1.132	1. 180	1.274	1.363	1.407	1.532	1.652	1.691	1.766	1.840	1.876
	0.104	0.125	0.148	0.203	0.268	0.304	0.433	0.591	0.651	0.780	0.925	1.003
$\begin{array}{r} 0.00550 \\ 1 / \quad 182 \end{array}$	1.135	1.187	1.238	1.336	1.430	1.476	1.607	1.733	1.773	1.853	1.930	1.968
	0.109	0.131	0.156	0.212	0.281	0.319	0.454	0.620	0.682	0.819	0.970	1.052
$\begin{array}{r} 0.00600 \\ 1 ; \quad 167 \end{array}$	1.186	1.240	1.293	1.396	1.494	1.541	1.679	1.810	1.852	1.936	2.016	2.056
	0.114	0.137	0.163	0.222	0.293	0.334	0.475	0.648	0.713	0.855	1.014	1.099
$\begin{array}{r} 0.00650 \\ 1 ; \quad 154 \end{array}$	1.235	1.291	1.346	1.453	1.555	1.605	1.748	1.884	1.928	2.015	2.099	2.140
	0.119	0.143	0.169	0.231	0.305	0.347	0.494	0.674	0.742	0.890	1.055	1.144
$\begin{array}{r} 0.00700 \\ 1 ; \quad 143 \end{array}$	1.281	1.340	1.398	1.508	1.614	1.665	1.814	1.956	2.001	2.091	2.178	2.221
	0.123	0.148	0.176	0.240	0.317	0.361	0.513	0.700	0.770	0.924	1.095	1.187
$\begin{array}{r} 0.00750 \\ 1 ; \quad 133 \end{array}$	1.327	1.387	1.447	1.561	1.671	1.724	1.878	2.024	2.072	2. 165	2.255	2.299
	0.128	0.153	0.182	0.248	0.328	0.373	0.531	0.724	0.797	0.956	1.134	1.229
$\begin{array}{r} 0.00800 \\ 1 / \quad 125 \end{array}$	1.370	1.433	1.494	1.613	1.726	1.781	1.940	2.091	2.140	2.236	2.329	2.375
	0.132	0.158	0.188	0.256	0.339	0.385	0.548	0.748	0.824	0.988	1.171	1.270
$\begin{array}{r} 0.00850 \\ 1 / \quad 118 \end{array}$	1.413	1.477	1.541	1.662	1.779	1.836	2.000	2.156	2.206	2.305	2.401	2.448
	0.136	0.163	0.194	0.264	0.349	0.397	0.565	0.771	0.849	1.018	1.207	1.309
$\begin{array}{r} 0.00900 \\ 1 / \quad 111 \end{array}$	1.454	1.520	1.585	1.711	1.831	1.889	2.058	2.218	2.270	2.372	2.471	2.520
	0.140	0.168	0.199	0.272	0.359	0.409	0.582	0.794	0.874	1.048	1.242	1.347
$\begin{array}{r} 0.00950 \\ 1 / \quad 105 \end{array}$	1.494	1.562	1.629	1.758	1.881	1.941	2.114	2.279	2.333	2.437	2.539	2.589
	0.144	0.173	0.205	0.280	0.369	0.420	0.598	0.816	0.898	1.077	1.276	1.384
$\begin{array}{r} 0.01000 \\ 1 ; \quad 100 \end{array}$	1.533	1.603	1.672	1.804	1.930	1.992	2.169	2.339	2.393	2.501	2.605	2.656
	0.147	0.177	0.210	0.287	0.379	0.431	0.613	0.837	0.921	1. 105	1.309	1.420
$\begin{array}{r} 0.01100 \\ 1 ; \quad 91 \end{array}$	1.608	1.682	1.753	1.892	2.025	2.089	2.276	2.453	2.510	2.623	2.732	2.786
	0.155	0.186	0.220	0.301	0.398	0.452	0.643	0.878	0.966	1.159	1.373	1.489
$\begin{array}{r} \hline 0.01200 \\ 1 ; \quad 83 \end{array}$	1.680	1.757	1.832	1.976	2.115	2.182	2.377	2.562	2.622	2.740	2.854	2.910
	0.162	0.194	0.230	0.314	0.415	0.472	0.672	0.917	1.009	1.210	1.435	1.556
$\begin{array}{r} 0.01300 \\ 1 ; \quad 77 \end{array}$	1.748	1.829	1.907	2.057	2.202	2.272	2.474	2.667	2.730	2.852	2.971	3.029
	0.168	0.202	0.240	0.327	0.432	0.492	0.700	0.954	1.050	1.260	1.493	1.619
$\begin{array}{r} 0.01400 \\ 1 ; \quad 71 \end{array}$	1.815	1.898	1.979	2.135	2.285	2.358	2.568	2.768	2.833	2.960	3.083	3.144
	0.175	0.210	0.249	0.340	0.449	0.510	0.726	0.991	1.090	1.308	1.550	1.681
$\begin{array}{r} 0.01500 \\ 1 ; \\ \hline \end{array}$	1.879	1.965	2.049	2.210	2.365	2.441	2.658	2.866	2.933	3.064	3.192	3.254
	0.181	0.217	0.257	0.352	0.464	0.52 \%	0.752	1.025	1.129	1.354	1.604	1.740
$\begin{array}{r} 0.01600 \\ 1 / \quad 62 \end{array}$	1.940	2.029	2.116	2.283	2.443	2.521	2.746	2.960	3.029	3.165	3.297	3.361
	0.187	0.224	0.266	0.363	0.480	0.546	0.776	1.059	1.166	1.398	1.657	1.797
$\begin{aligned} & 0.01700 \\ & 1 ; \quad 59 \end{aligned}$	2.000	2.092	2.181	2.354	2.519	2.599	2.830	3.051	3.122	3.262	3.398	3.465
	0.192	0.231	0.274	0.374	0.495	0.563	0.800	1.092	1.202	1.441	1.708	1.852
$\begin{array}{r} 0.01800 \\ 1 ; \quad 56 \end{array}$	2.059	2.153	2.245	2.422	2.592	2.674	2.913	3.140	3.213	3.357	3.497	3.566
	0.198	0.238	0.282	0.385	0.509	0.579	0.824	1.123	1.237	1.483	1.758	1.906
$\begin{array}{r} 0.01900 \\ 1 / 53 \end{array}$	2.115	2.212	2.306	2.488	2.663	2.748	2.993	3.226	3.301	3.449	3.593	3.664
	0.203	0.244	0.290	0.396	0.523	0.595	0.846	1.154	1.270	1.524	1.806	1.958

Coefficient for part-full pipes:

	120	130	140	150	200	200	200	250	250	250	300

$k s=1.500 \mathrm{~mm} \quad i<0.1$

