UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE FZE

BENG(HONS) CIVIL ENGINEERING

TRIMESTER TWO EXAMINATION 2021/2022

GROUND AND WATER STUDIES 2

MODULE NO: CIE5005

Date: Saturday 30th April 2022

Time: 10:00am – 1:00pm

INSTRUCTIONS TO CANDIDATES:

There are SIX questions on this paper.

Answer ANY FIVE questions.

Answer SECTION A and SECTION B on separate answer books.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formula sheet/supplementary information is provided at the end of each section.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

SECTION A- GROUND STUDIES

Q1

- a) A flexible foundation is to be constructed on a layer of soil of finite vertical extent of 15m with a bulk unit weight of 21kN/m³. The foundation is of length 5m and breadth 3m and it is to exert a uniform pressure of 200kN/m².
 - (i) Determine the immediate settlement under the centre and at the corner of the foundation if the elastic soil stiffness (E_u) is assumed to be 24MN/m² (Use Figure Q1a- on Page 9)

(8 marks)

(ii) Analyse the potential damage due to differential settlement for the above foundation.

(4 marks)

b) If the foundation is to be constructed over a layer of soil of infinite vertical extent with a bulk unit weight of 21kN/m³ and it imposes a contact pressure of 200kN/m² on the surface of the foundation, determine the vertical stress at a depth of 15m beneath the centre of the foundation using Figure Q1b- On Page 10.

(4 marks)

- c) Explain the following terms that may occur when carrying out a shear box test on sand. Ensure that you explain the anticipated density state of the soil as each term below is observed.
 - (i) 'peak' and 'residual' shear strength

(2 marks)

(ii) 'dilation' and 'realignment'

(2 marks) Total 20 marks PLEASE TURN THE PAGE.....

Q2.

a) A series of consolidated undrained triaxial tests were conducted on a soil sample and the following results were obtained is given in **Table Q2 a**

Test No:	1	2	3
Cell Pressure (kN/m ²)	250	500	750
Deviator Stress at failure (kN/m ²)	152	300	455
Porewater Pressure at Failure (kN/m ²)	120	250	350

Table Q2 a: Triaxial tests observation

Using **Figure Q2a on Page 11** construct Mohr's stress circles and determine the effective stress parameters of the soil sample.

(7.5 marks)

b) Describe any two of the full range of shear strength testing methods available for different soil types both in the field and in the laboratory. Ensure that your discussions justify the use of specific test methods for specific soil types and also state the advantages and limitations of the methods selected.

(5 marks)

c) Determine the distribution of Effective stress, Pore Water Pressure and Total Stress at each soil strata using the Figure Q2b on Page 12 and hence plot the diagram to illustrate the variation of total stress, pore water pressure and the effective stress with depth from ground surface to a depth of 12m below ground level. The water table is located at a depth of 4m below ground level within a 6m thick deposit of sandy gravel overlying 4m of clay.

> (7.5 marks) Total 20 marks

END OF SECTION A

PLEASE TURN THE PAGE SECTION B...

SECTION B- HYDRAULICS

Q3.

a) A pipe joins two reservoirs whose head difference is 10m. The pipe is 200mm diameter, 1000m in length and has a friction factor λ value of 0.002 for a discharge of 36.4 l/s. The flow to the downstream reservoir is to be increased to 442l/s, by adding a second pipe of the same diameter that connects at some point along the old pipe and runs down to the lower reservoir. If the frictional head loss remains the same, how long should the new pipe be? Assume the friction factor same as the old pipe. Neglect all minor losses.

(12 marks)

b) A 300mm diameter main conveying water at a flowrate of 69 litres/sec falls 3.0m over a distance of 400m. If the pipeline has a roughness value k_s of 1.5mm and the pressure at the end is 3 bars, determine the pressure at the start in kN/m². (Use the HRS Tables provided on Page 15 -19)

(8 marks) Total 20 marks

Q4.

- a) The reservoir A at a treatment plant feeds two service reservoirs B and C as shown below in Figure Q4.
 - (i) Using the information given in Table **Q4.a**, make a sensible first estimate for the head at the pipe junction in system A. Briefly explain the reasons for your selections.

(6 marks)

 (ii) the Flow Balancing Method to approximately determine the flows entering the service reservoirs in Figure Q4. Use Table Q4b attached on Page 18

(8 marks)

Q4 continued over the Page

PLEASE TURN THE PAGE...

Q4 continued

	Table Q4a: Details of System A											
Pipe	Length m	Diameter mm	Roughness mm	Reservoir	Water Level m (AOD)							
Α	720	300	1.5	A	300							
В	560	200	1.5	В	285							
C	650	200	1.5	С	280							

b) Describe the basic rules applicable in the analysis of complex pipe network (6 marks)

Total 20 marks PLEASE TURN THE PAGE.....

Q5.

(a) A service reservoir is to be constructed to provide water supply for a town 1 km distant. A supply pipeline of 450mm is provided which connects the reservoir to the distribution system with a flowrate of 443 l/s. The pipe material is coated steel, which has a k_s value of 0.03 mm. The top water level in the reservoir is 400.0m AOD and the pipe level at the start of the distribution system is 360.7m AOD. Using Barr's equation, find the Darcy friction factor ' λ ' and thus determine the pressure at the start of the distribution system. Assume the coefficient of dynamic viscosity 'µ' for water is 1.14 x 10⁻³ kg/ms

(14marks)

(b) Differentiate between Laminar and Turbulent flow velocity distribution. Use suitable equations and diagrams to support your findings.

(6 marks) Total 20 marks

Q6.

(a) A foul sewer system has to be designed for a town with an estimated population of 25000. State the general guidelines used for the design of this foul sewer system.

(6 marks)

(b) Details of an existing surface water sewer system are given below in Table Q6a. The pipes in the system have pipe roughness ks of 1.5mm and the time of entry for surface water is 5 minutes. Using the Rational method, complete Table Q6b on Page 19. provided, check whether the system is capable of withstanding a 1 in 10 years return period storm. Use the Rainfall Table and HRS tables are provided under supplementary Information.

1	2	3	4	5
Pipe Ref No	Pipe length (m)	Pipe gradient (1 in)	Imp. Area (ha)	Pipe dia. (mm)
1.00	150	62	0.15	225
1.01	170	105	0.12	300
2.00	220	182	0.13	225
2.01	160	71	0.11	300
1.02	180	53	0.20	300

Table Q6a. Drainage Design Data

(14 marks)

Total 20 marks

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FORMULA SHEET SECTION A

Formula Sheet for Section A

 $\sigma = \sigma' + u$ $\rho_i = \frac{qB}{E_u} I$ $\sigma_v = qI$

PLEASE TURN THE PAGE FOR SUPPLEMENTARY INFORMATION SECTION A

Supplementary Information Section A

Figure Q1a. Influence values for immediate settlement

Figure Q1b. Giroud Curves for Influence Factors

<u>Note</u> : The unit weight of water $\gamma w = 9.81 \text{ kN/m}^3$

Figure Q2b.

END OF FORMULA SHEETS FOR SECTION A

PLEASE TURN THE PAGE FOR SECTION B FORMULA SHEET

$$z_{1} + \frac{v_{1}^{2}}{2g} + \frac{P_{1}}{\rho g} = z_{2} + \frac{v_{2}^{2}}{2g} + \frac{P_{2}}{\rho g} + h_{f}$$

$$Q = A v$$

$$h_{f} = \frac{\lambda L v^{2}}{2 g d}$$

$$h_{f} = \frac{\lambda L Q^{2}}{12.1 d^{5}}$$

$$h_{f} = S_{o} L$$

$$Re = \frac{v d}{v} = \frac{\rho v d}{\mu}$$

$$v = \frac{\mu}{\rho}$$

$$\frac{1}{\sqrt{\lambda}} = -2 \log \left[\frac{k_{s}}{3.7d} + \frac{5.1286}{R_{e}^{0.89}}\right]$$

 $Q = 2.78 A_{p}i$

PLEASE TURN THE PAGE FOR SECTION B SUPPLEMENTARY INFORMATION

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Trimester 2 Examination 2021/22 Ground and Water Studies 2 Module No. CIE5005 Supplementary Information Section B

Rainfall Data

Rates of Rainfall in mm/h for a range of duration and return period for a apecified location in the United Kingdom National Grid Reference 4833E 1633N

RETURN PERIOD (YEARS)

DURATION	1	2	6	10	20	50	100
20 MINS	95.6	93.4	120.5	138.3	158	187	213
2 E MINIC	76 5	875	113.4	130.4	149	177	202
2.D MINS	66.7	87 3	107.2	123.4	141	168	192
SU MINS	67.0	77.0	101 7	117 3	135	161	184
3.0 MINS	62.0	77.0	068	1118	128	154	176
A S ASIAIS	53.0	73.0	05.0	110.8	127	152	174
4.1 MINS	69.1	73.1	803	100.0	127	101	173
4.2 MINS	0.50	12.0	85.0	109.0	120	150	172
4.3 MINS	67.9	71.0	022	100.0	120	140	170
4.4 MINS	57.4	71.0	83.2	107.5	127	149	169
4.5 MINS	60.9	70.3	82.4	106.0	123	146	168
4.5 MINS	66.3	69.6	8170	100.0	122	145	166
4.7 MINS	55.8	-69.0	90.8	105.1	121	145	100
4.8 MINS	55.3	68.3	90.0	1042	120	147	164
4.9 MINS	54,8	67.7	89.2	103.4	119	143	162
5.0 MINS	54.3	67.1	88.5	102.5	116	142	103
5.1 MINS	53.9	66.5	87.7	101.7	117	141	162
5.2 MINS	53.4	65.9	87.0	100.9	110	140	160
5.3 MINS	53.0	65.4	86.3	100.1	115	139	159
5.4 MINS	52.5	64.B	85.6	89.3	115	138	158
5.5 MINS	52.1	64.3	84.9	98.5	114	137	157
5.6 MINS	51.7	63.7	84.2	978	113	136	166
5.7 MINS	51.2	63.2	83.5	97.0	112	135	155
5.8 MINS	50.8	62.7	82.9	96.3	111	134	154
5.9 MINS	50.4	62.2	82.3	95.6	110	133	153
6.0 MINS	50.0	61.7	81.6	94.9	110	132	152
6.2 MINS	49.3	60.7	80.4	93.5	108	130	150
6.4 MINS	48.5	59.B	79.2	92.2	107	129	148
6.6 MINS	47.B	58.9	78.1	90.9	105	127	146
6.8 MINS	47.1	58.0	77.0	89.6	104	125	144
7.0 MINS	46.4	57.2	75.9	88.4	102	124	143
7.2 MINS	45.B	56.4	74.9	87.3	101	122	141
7.4 MINS	45.2	55.6	739	86.1	100	121	139
7.6 MINS	44.5	54.B	72.9	85.0	89	119	138
7.8 MINS	44 D	64.1	71,9	84.0	97	118	136
8.0 MINS	43.4	53.4	71.0	82.9	96	117	135
8.2 MINS	42.B	52.7	70.1	81.9	95	115	133
B.4 MINS	42.3	52.0	69.3	81.0	94	114	132
8.6 MINS	41.8	51.4	68.4	80.0	83	113	131
8.8 MINS	41.2	50.7	67.6	79.1	92	112	129
9.0 MINS	40,8	50.1	66.8	78.2	91	110	128
9.2 MINS	40.3	49.5	66.0	77.3	90	109	127
9.4 MINS	39.9	49.0	65.3	76.4	89	108	125
9.6 MINS	39.4	48.4	64.6	75.6	88	107	124
9.8 MINS	39.0	47.9	63.8	74.B	87	106	123
10.0 MINS	38.6	47.4	63.1	74.0	86	105	121
10.5 MINS	37.6	46.1	61.5	72.1	84	102	118
11.0 MINS	36.7	44.9	69.9	70.2	82	100	116
11.5 MINS	35 B	43.8	58.4	68.5	80	97	113
12.0 MINS	35.0	42.8	57.0	66.9	78	95	111
12.5 MINS	34.2	41.8	55.7	65.4	76	93	106
13.0 MINS	33.4	40.B	54.4	64.0	75	91	106
13.5 MINS	32.7	3 9.9	53.3	62.6	73	89	104
14.0 MINS	32.0	39.1	52.1	61.3	72	87	102
14.5 MINS	31.4	38.3	51.0	60.0	70	86	100
15.0 MINS	30.8	37.5	50.0	58.8	69	84	98
16.0 MINS	29.6	36.1	48.1	56.6	66	81	94
17.0 MINS	28.6	34.B	46.3	54.6	64	78	91
18.0 MINS	27.6	33.5	44.7	52.7	62	76	88
19.0 MINS	26.7	32.4	43.2	51.0	60	73	85
20.0 MINS	25.9	31.4	41.B	49.3	58	71	83

Page 15 of 19

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Trimester 2 Examination 2021/22 Ground and Water Studies 2 Module No. CIE5005

 $\boldsymbol{\boldsymbol{\lambda}}$

				ks i=	= 1·500 0·00015	mm to 0.004	•	Wate full	8			
				ie 1 i	hydrauli n 6667 t	ic gradi o 1 in 2	ent = 50	vel disc	ocities i harges i	n m/s n l/s		continued
Gradient	Pipe of 50	diameters 75	in mm : 80	100	125	150	175	200	225	250	275	300
0.00075 1/ 1333	0.108	0.145	0.152	0.178	0.208	0.236	0.262	0.286	0.310	0.333	0.354	0.375
0.00080	0.112	0.150	0.157	0.184	0.215	0.244	0.270	0.296	0.320	0.344	0.366	0.388
0.00085	0.115	0.155 0.684	0.162 0.815	0.190 1.490	0.222 2.719	0.251 4.438	0.279 6.710	0.305 9.591	0.330 13.137	0.354 17.401	0.378	0.400 28.278
0.00090	0.119	0.159 0.704	0.167	0.195 1.534	0.228 2.800	0.259 4.570	0.287	0.314 9.874	0.340 13.524	0.365	0.389 23.092	0.412
0.00095 1/ 1053	0.122	0.164 0.724	0.172	0.201 1.578	0.235 2.879	0.266 4.698	0.295 7.101	0.323	0.350 13.901	0.375	0.400	0.423
0.00100 1/ 1000	0.125	0.168 0.744	0.176 0.886	0.206 1.620	0.241 2.955	0.273 4.822	0.303 7.289	0.332	0.359 14.268	0.385 18.897	0.410	0.434 30.705
0.00110	0.132	0.177 0.781	0.185 0.930	0.217 1.701	0.253 3.102	0.286 5.062	0.318 7.651	0.348 10.934	0.377 14.975	0.404 19.833	0.430 25.564	0.456 32.223
0.00120 1/ 833	0.138 0.271	0.185 0.817	0.194 0.973	0.226 1.778	0.264 3.243	0.299 5.292	0.332 7.997	0.364 11.428	0.394 15.651	0.422 20.727	0.450 26.715	0.476 33.674
0.00130	0.144	0.193 0.851	0.202	0.236 1.853	0.275	0.312 5.512	0.346 8.329	0.379 11.902	0.410 16.299	0.440 21.584	0.468 27.820	0.496 35.065
0.00140	0.149 0.293	0.200 0.884	0.209 1.053	0.245	0.286 3.509	0.324 5.723	0.360 8.648	0.393 12.358	0.426 16.923	0.457 22.410	0.486 28.883	0.515 36.404
0.00150	0.155	0.207	0.217 1.091	0.254 1.993	0.296 3.634	0.335 5.928	0.372 8.957	0.407 12.798	0.441 17.525	0.473 23.206	0.504 29.908	0.533 37.696
0.00160 1/ 625	0.160	0.214	0.224 1.127	0.262 2.060	0.306 3.755	0.347 6.125	0.385 9.255	0.421 13.223	0.455 18.107	0.488 23.976	0.520 30.900	0.551 38.946
0.00170 1/ 588	0.165	0.221 0.977	0.231 1.163	0.271 2.125	0.316 3.873	0.357 6.317	0.397 9.544	0.434 13.636	0.470 18.671	0.504 24.723	0.536 31.862	0.568 40.157
0.00180 1/ 556	0.170 0.334	0.228 1.006	0.238 1.198	0.279 2.187	0.325 3.987	0.368 6.503	0.408 9.824	0.447 14.036	0.483 19.219	0.518 25.447	0.552 32.795	0.585 41.333
0.00190 1/ 526	0.175	0.234 1.034	0.245 1.231	0.286 2.249	0.334 4.099	0.378 6.684	0.420	0.459 14.426	0.497 19.752	0.533 26.152	0.567 33.703	0.601
0.00200	0.180 0.353	0.240 1.061	0.251 1.264	0.294 2.308	0.343 4.207	0.388 6.860	0.431 10.363	0.471 14.805	0.510 20.271	0.547 26.839	0.582 34.588	0.617 43.590
0.00220 1/ 455	0.189 0.370	0.252 1.114	0.264 1.327	0.308 2.423	0.360 4.415	0.407 7.200	0.452 10.876	0.495 15.537	0.535 21.271	0.574 28.163	0.611 36.293	0.647 45.738
0.00240 1/ 417	0.197 0.387	0.264 1.165	0.276 1.387	0.322 2.533	0.376 4.615	0.426 7.524	0.473 11.365	0.517 16.235	0.559 22.227	0.599 29.428	0.638 37.922	0.676 47.790
0.00260 1/ 385	0.205 0.403	0.275 1.213	0.287 1.445	0.336 2.638	0.392 4.806	0.443 7.836	0.492 11.835	0.538 16.906	0.582 23.144	0.624 30.641	0.665 39.484	0.704 49.758
0.00280	0.213	0.285 1.260	0.298 1.500	0.349 2.739	0.407 4.990	0.460 8.135	0.511 12.287	0.559 17.551	0.604 24.026	0.648 31.808	0.690 40.988	0.731 51.652
0.00300 1/ 333	0.221	0.295 1.305	0.309 1.554	0.361 2.837	0.421 5.168	0.477 8.424	0.529 12.723	0.578 18.173	0.626 24.877	0.671 32.935	0.715 42.438	0.757 53.479
0.00320 1/ 313	0.229 0.449	0.305 1.349	0.319 1.606	0.373 2.931	0.435 5.339	0.493 8.704	0.546 13.145	0.598 18.775	0.646 25.701	0.693 34.024	0.738 43.841	0.782 55.246
0.00340 1/ 294	0.236 0.463	0.315 1.391	0.329 1.656	0.385 3.023	0.449 5.506	0.508 8.975	0.563 13.554	0.616 19.358	0.666 26.499	0.715 35.080	0.761 45.201	0.806 56.959
0.00360	0.243 0.477	0.324 1.432	0.339 1.705	0.396 3.112	0.462 5.668	0.523 9.238	0.580 13.951	0.634 19.925	0.686 27.274	0.736 36.105	0.783 46.522	0.829 58.623
0.00380	0.250	0.333 1.472	0.349 1.753	0.407 3.198	0.475 5.825	0.537 9.494	0.596 14.337	0.652 20.476	0.705 28.028	0.756 37.102	0.805 47.806	0.852 60.240
	Coeffi	cient for	part-fu	ll pipes	35	40	45	50	60	70	70	
		20		23		40	رب 	50	ks =	1·500mr	n 70	i < 0.004

PLEASE TURN THE PAGE...

 $\boldsymbol{\lambda}$

ie hydr	aulic gr	adient =		velocitie	es in m/	S					
1 in 250) to 1 in	10		discharg	e s in l/s						
Pipe di	ameters 75	in mm : 80	100	125	150	175	200	225	250	275	30
0.256	0.342	0.358	0.418	0.487	0.551	0.612	0.669	0.723	0.776	0.826	0.87
0.263	0.351	0.367	0.428	0.499	0.565	0.627	0.686 21.536	0.741 29.478	0.795	0.846	0.89
0.269	0.359	0.376	0.439 3.445	0.511 6.273	0.579	0.642	0.702 22.047	0.759	0.814 39.946	0.867 51.468	0.91
0.275	0.367	0.384 1.931	0.449 3.523	0.523 6.416	0.592	0.656	0.718 22.547	0.776 30.860	0.832 40.850	0.886 52.633	0.93
0.281 0.552	0.375 1.658	0.393 1.973	0.458 3.600	0.534 6.555	0.605 10.683	0.671 16.130	0.733 23.035	0.793 31.529	0.850 41.735	0.905 53.773	0.95
0.287 0.564	0.383 1.692	0.401 2.014	0.468 3.675	0.545 6.692	0.617 10.905	0.685 16.466	0.748 23.514	0.809 32.184	0.868	0.924 54.889	0.97 69.10
0.301 0.592	0.402	0.421 2.114	0.491 3.857	0.572 7.022	0.648 11.443	0.718	0.785 24.671	0.849 33.766	0.911 44.695	0.970 57.585	1.02 72.5
0.315 0.618	0.420 1.856	0.440 2.209	0.513 4.030	0.598 7.337	0.677 11.956	0.750 18.051	0.820 25.776	0.887 35.278	0.951 46.695	1.013 60.161	1.07 75.80
0.328	0.438 1.933	0.458 2.301	0.534 4.197	0.623 7.640	0.704 12.448	0.781	0.854 26.836	0.924 36.728	0.990 48.614	1.054 62.632	1.1 [.] 78.9
0.341 0.669	0.454 2.007	0.475 2.389	0.555 4.357	0.646	0.731 12.922	0.811	0.887 27.856	0.959 38.123	1.028	1.095 65.009	1.15 81.9
0.353 0.693	0.470 2.078	0.492 2.474	0.574 4.511	0.669 8.212	0.757 13.379	0.840 20.198	0.918 28.840	0.993 39.470	1.064 52.241	1.133 67.303	1.20 84.7
0.365 0.716	0.486 2.147	0.508 2.556	0.593	0.691 8.484	0.782 13.822	0.867 20.865	0.948 29.792	1.025 40.772	1.099 53.964	1.170 69.522	1.2
0.376	0.501 2.214	0.524 2.635	0.612 4.806	0.713 8.747	0.806 14.250	0.894 21.512	0.978 30.715	1.057 42.034	1.133 55.634	1.207 71.673	1.27 90.3
0.387	0.516 2.279	0.540 2.712	0.630 4.946	0.734 9.002	0.830 14.666	0.920 22.139	1.006 31.611	1.088 43.259	1.166 57.255	1.242 73.761	1.3 92.9
0.398 0.781	0.530 2.342	0.555 2.788	0.647 5.083	0.754 9.251	0.853 15.071	0.946 22.750	1.034 32.482	1.118 44.451	1.199 58.832	1.276 75.792	1.35 95.49
0.408	0.544 2.404	0.569 2.861	0.664 5.216	0.774 9.493	0.875 15.465	0.971 23.345	1.061 33.331	1.147 45.612	1.230 60.368	1.309 77.770	1.38
0.429	0.571 2.522	0.597 3.002	0.697 5.473	0.812 9.960	0.918 16.225	1.018 24.491	1.113 34.967	1.203 47.850	1.290 63.329	1.374 81.583	1.45 102.7
0.448	0.597 2.636	0.624	0.728 5.718	0.848 10.406	0.959 16.951	1.064 25.586	1.163 36.530	1.257 49.988 •	1.348 66.158	1.435 85.226	1.5 107.3
0.466	0.621 2.744	0.650 3.266	0.758 5.954	0.883 10.834	0.999 17.648	1.107 26.637	1.210 38.029	1.309 52.039	1.403 68.871	1.494 88.721	1.58 111.7
0.484	0.645 2.849	0.674 3.390	0.787 6.180	0.916 11.246	1.037 18.318	1.149 27.648	1.256 39.472	1.358 54.012	1.456 71.482	1.550 92.083	1.6 4 116.0
0.501	0.668 2.950	0.698 3.510	0.815	0.949 11.643	1.073 18.964	1.190 28.623	1.301 40.864	1.406 55.916	1.508 74.001	1.605 95.328	1.69 120.0
0.518	0.690 3.047	0.721 3.626	0.842 6.610	0.980 12.027	1.109 19.590	1.229 29.567	1.344 -42.210	1.453 57.758	1.557 76.437	1.658 98.466	1.75 124.0
0.534	0.711 3.142	0.744 3.739	0.868 6.815	1.010 12.400	1.143 20.196	1.267 30.481	1.385 43.515	1.498 59.543	1.605 78.799	1.709 101.507	1.80 127.8
0.550	0.732 3.234	0.766 3.848	0.893 7.014	1.040 12.761	1.176 20.784	1.304 31.369	1.425 44.782	1.541 61.276	1.652 81.092	1.759 104.460	1.8 0 131.6
0.565	0.752 3.323	0.787 3.954	0.918 7.208	1.069 13.113	1.209 21.357	1.340 32.232	1.465 46.014	1.584 62.961	1.697 83.322	1.807 107.332	1.91 135.2
Coeffi	cient fo	r part-f	ull pip	es:							

University of Bolton Western International College FZE BEng (Hons) Civil Engineering Trimester 2 Examination 2021/22 Ground and Water Studies 2 Module No. CIE5005

 \checkmark

			ks i=	s = 1.500 = 0.004	/mm to 0·1		Wa ful	ter (or s l bore c	ewage) a ondition	at 15° C s.	8
			ie 1	hydrau in 250 t	lic grad o 1 in 10	ient =	vel disc	ocities harges i	in m/s n l/s		continu
ipe di 50	iameters 75	in m.m.: 80	: 100	. 125	150	175	2 00	225	250	275	300
).580 1.138	0.772	0.807	0.942	1.096	1.240 21.914	1.375 33.073	1.503	1.625 64.603	1.742	1.854 110.130	1.963 138.743
).608 1.195	0.810	0.847	0.988	1.150	1.301	1.442 34.695	1.577 49.528	1.704	1.827 89.682	1.945	2.059 145.536
).636 .248	0.846	0.885	1.032	1.202	1.359	1.507	1.647	1.780 70.792	1.908 93.682	2.032 120.675	2.151 152.026
.662	0.881 3.892	0.921	1.075	1.251	1.415	1.569	1.714	1.853 73.693	1.987 97.520	2.115 125.618	2.239 158.251
).687 .349	0.914	0.956	1.115 8.760	1.298 15.934	1.468	1.628 39.159	1.779	1.924 76.483	2.062 101.212	2.195 130.373	2.324 164.241
).711 .397	0.947	0.990	1.155	1.344	1.520 26.863	1.685	1.842 57.868	1.991 79.176	2.134 104.775	2.272 134.961	2.405 170.021
.735	0.978	1.023	1.193	1.389 17.040	1.570 27.748	1.741 41.873	1.903 59.772	2.057 81.781	2.205	2.347 139.399	2.484 175.611
.758	1.008	1.054	1.230 9.657	1.431 17.566	1.619	1.795 43.166	1.961 61.617	2.120 84.305	2.273	2.419 143.701	2.561 181.029
).780 .531	1.038	1.085	1.265	1.473 18.078	1.666 29.437	1.847	2.018 63.409	2,182 86.756	2.339 114.804	2.490 147.877	2.635 186.289
.801	1.066	1.115	1.300	1.514	1.712	1.898	2.074 65.152	2.242 89.140	2.403 117.958	2.558 151.939	2.708 191.406
.822	1.094	1.144	1.334 10.479	1.553 19.059	1.756 31.035	1.947 46.832	2.128 66.849	2.300 91.462	2.466 121.030	2.625 155.895	2.778 196.389
.843	1.121 4.953	1.173	1.367 10.739	1.592 19.532	1.800	1.995 47.993	(2.181 -68.505	2.357 93.726	2.527 124.026	2.690 159.754	2.847 201.250
.863	1.148	1.200	1.400	1.629 19.993	1.842	2.042 49.125	2.232	2.413 95.938	2.586 126.951	2.753 163:522	2.914 205.996
.882 .733	1.174	1.227 6.170	1.431 11.241	1.666 20.444	1.884 33.290	2.088 50.233	2.282	2.467 98.099	2.644 129.811	2.815 167.205	2.980 210.635
.901 .770	1.199 5.297	1.254 6.303	1.462 11.484	1.702 20.886	1.924 34.008	2.133	2.332	2.520 100.214	2.701 132.610	2.876 170.809	3.044 215.174
.920 .807	1.224 5.407	1.280 6.434	1.492 11.721	1.737 21.318	1.964 34.711	2.178 52.377	2.380 74.762	2.573 102.286	2.757	2.935 174.339	3.107 219.620
.965	1.284	1.343 6.749	1.566	1.822 22.362	2.060 36.411	2.284	2.496 78.420	2.698 107.290	2.892 141.971	3.079 182.866	3.259 230.361
.009 .980	1.341 5.926	1.403 7.050	1.635 12.845	1.904 23.360	2.152 38.034	2.386 57.390	2.607 81.916	2.819 112.071	3.021 148.297	3.216 191.013	3.404 240.623
.050 .062	1.396 6.169	1.460 7.340	1.702 13.371	1.981 24.316	2.240 39.592	2.484 59.740	2.714 85.268	2.934 116.657	3.145 154.365	3.347 198.827	3.543 250.466
.090 .140	1.449 6.402	1.516 7.618	1.767 13.877	2.057 25.237	2.325 41.090	2.578 62.000	2.817 88.494	3.045 121.070	3.264 160.203	3.474 206.346	3.677 259.937
. 128 . 216	1.500 6.628	1.569 7.886	1.829 14.366	2.129 26.126	2.407	2.668 64.182	2.916. 91.607	3.152 125.328	3.378 165.836	3.596 213.601	3.807 269.075
- 166 - 289	1.550 6.846	1.621 8.146	1.889 14.839	2.199	2.486 43.935	2.756 66.291	3.012 94.617	3.256 129.446	3.489 171.285	3.714 220.618	3.932 277.914
.202	1.598 7.058	1.671 8.397	1.948 15.297	2.267 27.818	2.563 45.290	2.841 68.336	3.105 97.535	3.356 133.437	3.597 176.565	3.829 227.419	4.053 286.480
.237 .428	1.644 7.263	1.7.19 8.642	2.004	2.333 28.626	2.637 46.606	2.924 70.321	3.195 100.368	3.453 137.313	3.701 181.693	3.940 234.023	4.171 294.798
.271 .495	1.689 7.463	1.767 8.879	2.059	2.397 29.413	2.710 47.887	3.004 72.252	3.283 103.124	3.548 141.082	3.803 186.680	4.048 240.446	4.285 302.888
.304 .560	1.733 7.658	1.813 9.111	2.113	2.459 30.179	2.780 49.133	3.082 74.133	3.368 105.808	3.641 144.754	3.902 191.537	4.154 246.701	4.396 310.768
oeffic	ient for	part -	full pipe	S :							
20	35	35	45	50	70	80	90	100	110	120	130

Table Q4b. Flow balancing Method

University of Western Inte BEng (Hons Trimester 2 Ground and Module No.	f Bolton ernational Colle) Civil Enginee Examination 20 Water Studies CIE5005	ege FZE ring 021/22 2	Та	Page 18 ble <mark>Q4b.</mark> Flov	8 of 19 w balancing Me	ethod	AFR	
	$H_j = .$	1 st estimate	m			2nd estimate H	(_j =	
Ріре	h _f across Pipe (m)	S ₀ (1 in)	Q (litre/s)	Q (m ³ /s)	Q/hf	hf acrossPipe (m)	S ₀ (1 in)	Q (litre/s)
Α				~				
В								
С				S				
	Error in	$\mathbf{n} \mathbf{Q} = \Delta \mathbf{Q} =$	Erro	$r in Q = \Delta Q =$				
$\Delta H = \frac{2\Delta}{\sum Q}$	Q /h _f	2 C	$\langle \mathbf{v} \rangle$					

TO BE HANDED IN WITH ANSWER BOOK

Candidates ID No.....

Pipe length ref No	Pipe length (m)	Pipe gradient (1 in)	Vel (m/s)	Time of flow (min)	Time of Conc. (min)	Rate of rainfall i (mm/hr)	lmp. Area (ha)	Cumulative Imp. Area A _P (ha)	Flow Q (I/s)	Pipe dia. (mm)
1.00	150	62					0.15			225
1.01	170	105					0.12			300
2.00	220	182			S		0.13			225
2.01	160	71	4	N			0.11			300
1.02	180	53					0.20			300

Table Q6b. Drainage Design

TO BE HANDED IN WITH ANSWER BOOK Candidates ID No..... END OF SUPPLEMENTARY SHEETS END OF PAPER