SCHOOL OF ENGINEERING

BENG (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATIONS 2021/2022

GROUND AND WATER STUDIES 1

MODULE NO: CIE4009

Date: Wednesday 18 ${ }^{\text {th }}$ May 2022
Time: 14:00-17:00

INSTRUCTIONS TO CANDIDATES:

There are TWO Sections; A and B.
You will be supplied with TWO Answer Booklets by the Invigilator. Answer Section A in ONE Answer Booklet, and Section B in the OTHER.

Section A: contains THREE questions: you should answer ANY TWO questions. Each of these questions is worth 20 marks.

Section B: contains FOUR questions: you should answer ANY THREE questions from these four questions. Each of these questions is worth 20 marks.

Marks for parts of questions are shown in brackets.

This assessment carries 100 marks.
All working must be shown.
A formula sheet is included.
Graph paper is provided.

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Section A - Water (Answer TWO Questions from this Section)

Question 1

(a) Define the term fluid pressure and mention four ways to measure it.
(b) Two parallel pipes carrying freshwater and seawater are connected to each other by a double U-tube differential manometer, as shown in Figure Q1,
(i) Determine the pressure difference between the two pipelines.
(10 marks)
(ii) What would be the pressure difference between the two pipes if the oil in the manometer is replaced by air and all other heights remain the same?
(5 marks)
Take the density of seawater at that location as $1035 \mathrm{~kg} / \mathrm{m}^{3}$, the fresh water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$, the mercury as $13600 \mathrm{~kg} / \mathrm{m}^{3}$ the air as $1.1213 \mathrm{~kg} / \mathrm{m}^{3}$ and the specific gravity of the oil as 0.72 . Assume all fluids are incompressible. The heights in the double tube are measured as follows: $h_{w}=0.5 \mathrm{~m}, h_{H g}=0.1 \mathrm{~m}$, $h_{\text {oil }}=0.75 \mathrm{~m}$ and $h_{\text {sea }}=0.2 .5 \mathrm{~m}$.
[Total 20 marks]

Figure Q1

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Question 2

(a) Water flows through an open channel of rectangular section, which is 4 m wide, bed slope is 0.0004 , roughness coefficient (n) is 0.025 and discharge is $8 \mathrm{~m}^{3} / \mathrm{s}$. Determine the depth of water.
(b) The compound channel section (Figure 2b) has a roughness coefficient (n) equals 0.023 , slope $=0.0005$. Find (1) the discharge and (2) the flow velocity. Assume that the velocity is not uniform across the whole compound section of the channel. Consider the following dimensions:
Top width $(B)=8 \mathrm{~m}$
Bottom width (b) $=2.5 \mathrm{~m}$
Depth of water $(D)=2.5 \mathrm{~m}$
$\mathrm{h}=0.5 \mathrm{~m}$

Compound Channel (main channel and flood plain)

Left flood plain Main channel
Right flood plain
(Figure 2b)
(14 marks)
Total 20 marks

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Question 3

(a) Water flowing from a large reservoir to atmosphere (Figure 3a) through a 200 mm diameter pipe 500 m long. The entry from the reservoir to the pipe is a sharp-edged entrance and the outlet is 15 m below the surface level in the reservoir. Taking friction factor (f) $=0.05$ in the Darcy-Weisbach formula, calculate the discharge passing through the pipe.

(Figure 3 a)
(12 marks)
(b) A rectangular channel 2 m wide carries water with a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$. A rectangular weir (Figure 3 b) is to be installed across the canal to raise the water level 4 m above the channel floor. Calculate the required height of the weir (P) if the weir is suppressed. Assume ($C_{d}=0.6$)

(Figure 3b)

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Section B - Ground (Answer THREE Questions from this Section)

Question 4

(a) Sketch a "soil model" diagram clearly showing the solids, water and air components annotated with conventional symbols to allow development of 'soil property' equations.
(5 marks)
(b) An undisturbed sample of clayey soil is found to have a wet weight of 285 N , a dry weight of 250 N , and a total volume of $14 \times 10^{3} \mathrm{~cm}^{3}$, if the specific gravity of soil solids is 2.70 . Determine:
(i) The water content
(ii) Void ratio
(iii) Porosity
(iv)Degree of saturation
(v) The air content
(c) What would be the bulk unit weight and water content if the soil in (b) were fully saturated at the same void ratio as in its natural state?

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Section B continued....

Question 5

(a) Define the term soil compaction and explain three of its applications in civil engineering
(5 marks)
(b) The results of a standard compaction test for a soil having a value of (Gs=2.5) are shown in the table below.

Water Content (\%)	6.2	8.1	9.81	11.5	12.3	13.2
Bulk Unit Weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	16.9	18.7	19.5	20.5	20.4	20.1

(i) Plot the compaction curve and obtain the maximum dry unit weight (γ_{d} in $\mathrm{kN} / \mathrm{m}^{3}$) and the optimum water content.
(5 marks)
(ii) On the same axes, draw the Y_{d} vs w curves for $0 \%, 5 \%$ and 10% air content and determine the air content for the maximum dry unit weight.
(5 marks)
(iii) Determine the corresponding void ratio and degree of saturation reached for the maximum dry unit weight.

Total 20 marks

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Section B continued....

Question 6

(a) Classify the following soils given the following data:

Gravel fraction (\% retained on \#4) = 30\%
Sand fraction (passing \#4, retained on \#200) $=40 \%$
Silt and clay fraction (passing \#200) = 30\%
LL = 30; PI = 12
(7 marks)
(b) Use the percentages of minerals given in Table Q6 to determine the missing values and the name of the soil texture using the soil texture triangle given over leaf.

No	Percentage (\%)			
	Gravel	Sand	Silt	Clay
1	0	55		15
2	15	25	30	
3	0		45	20
4	10	50	10	
5	0		75	10

Table Q6
(13 marks)
Total 20 marks

Section B continued over the page....
PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Section B continued....

Question 7

(a) Explain the term soil permeability, give three of its applications in civil engineering, and discuss the factors affecting a soil coefficient of permeability.
(5 marks)
(b) Figure Q7 below shows a soil profile consists of three layers with properties shown in Table Q7. Calculate the following:
(i) The equivalent coefficient of permeability along the x-direction
(ii) The equivalent coefficient of permeability along the z-direction
(iii) The ratio of coefficients in two direction

	Layer 1
$\square k_{x}$	Layer 2
	Layer 3

Figure Q7

Layer	Thickness (m)	$\mathrm{kx}(\mathrm{m} / \mathrm{s})$	$\mathrm{kz}(\mathrm{m} / \mathrm{s})$
1	2.5	$2.0 \times 10-6$	$1.0 \times 10-6$
2	5.0	$5.0 \times 10-8$	$2.5 \times 10-8$
3	2.5	$3.0 \times 10-5$	$1.5 \times 10-5$

TableQ7
END OF SECTION B
END OF QUESTIONS
Unified Soil Classification System, USDA Soil Traingle \& Useful Formula over the page....

School of Engineering BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

UNIFIED SOIL CLASSIFICATION SYSTEM

| UNIFIED SOIL CLASSIFICATION AND SYMBOL CHART |
| :--- | :--- | :--- | | COARSE-GRAINED SOILS |
| :--- |
| (more than 50% of material is larger than No. 200 sieve size.) |

$\left.\begin{array}{|l|l|l|}\hline & \text { LABORATORY CLASSIFICATION CRITERIA } \\ \hline \text { GW } & C_{u}=\frac{D_{60}}{D_{10}} \text { greater than } 4: C_{C}=\frac{D_{30}}{D_{10} \times D_{60}}\end{array}\right]$ between 1 and 3

[^0]

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009
USDA Soil Triangle

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Useful Formulae Soil Part

TERMINOLOGY, SYMBOLS AND UNITS

Term

Volume
Mass
Gravity
Weight

Total volume
 Volume of air
 Volume of water
 Volume of voids
 Volume of Solids

Mass of water
Mass of solids
Total mass

Specific gravity
Density of water
Unit weight of water
Void ratio
Degree of saturation
Moisture content
Porosity

Soil Bulk density
Dry density
Saturated density
Soil Bulk unit weight
Dry unit weight
Saturated unit weight

Symbol Units
m^{3}
kg
g
$9.81 \mathrm{~m} / \mathrm{sec}^{2}$
$\mathrm{kN}=(\mathrm{kg} \times 9.81) / 1000$

V
V_{A}
Vw
V_{V}
Vs

Mw
kg
Ms
kg
$\mathrm{M} \quad \mathrm{kN}$
m^{3}
m^{3}
m^{3}
m^{3}
m^{3}

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

DEFINITIONS

Term

Density of water, ρ_{w}
Unit weight of water, γ_{w}
Specific gravity, G_{s}

Water content, w

Void ratio, e

Degree of saturation, S_{r}	$\frac{\text { volume of water }}{\text { volume of voids }}$	$\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{v}}}$
Porosity, n	$\frac{\text { volume of voids }}{\text { total volume }}$	$\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$
Bulk density, ρ_{b}	$\frac{\text { total mass }}{\text { total volume }}$	$\frac{\mathrm{M}}{\mathrm{V}}$
Dry density, ρ_{d}	$\frac{\text { mass of solids }}{\text { total volume }}$	$\frac{\mathrm{M}}{\mathrm{V}}$

Saturated density, $\rho_{\text {sat }}$

Bulk unit weight, γ_{b}

Dry unit weight, γ_{d}

Saturated unit weight, $\gamma_{\text {sat }}$

Air voids, A_{v}

Expression

$\frac{\text { density of solids }}{\text { density of water }}$	$\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{w}}}$
$\frac{\text { mass of water }}{\text { mass of solids }}$	$\frac{\mathrm{M}_{\mathrm{w}}}{\mathrm{M}_{\mathrm{s}}}$

$\underline{\text { volume of voids }} \quad \frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$ volume of solids V_{s} $\frac{\text { volume of water }}{\text { volume of voids }} \quad \frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{v}}}$ $\frac{\text { volume of voids }}{\text { total volume }} \quad \frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$ $\frac{\text { total mass }}{\text { total volume }} \quad \frac{\mathrm{M}}{\mathrm{V}}$
$\frac{\text { mass of solids }}{\text { total volume }} \quad \frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{V}}$
total saturated mass
total volume $\frac{\mathrm{M}}{\mathrm{V}}$
$\frac{\text { total weight }}{\text { total volume }} \quad \frac{\mathrm{W}}{\mathrm{V}}$
$\frac{\text { weight of solids }}{\text { total volume }} \quad \frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{V}}$
$\frac{\text { total saturated weight }}{\text { total volume }} \quad \frac{\mathrm{W}}{\mathrm{V}}$
$\frac{\text { volume of air }}{\text { total volume }} \quad \frac{\mathrm{Va}}{\mathrm{V}}$

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

BASIC PROPERTIES Formulae:

Void space relationship from soil model $w G_{s}=S_{r} e$
Bulk Density

$$
\begin{aligned}
\rho_{b} & =\frac{\left(G_{s}+S_{r} e\right) \rho_{\mathrm{w}}}{1+e} \\
\rho_{b} & =\frac{\rho_{\mathrm{w}} \mathrm{G}_{\mathrm{s}}(1+\mathrm{w})}{1+\mathrm{e}}
\end{aligned}
$$

Dry Density

$$
\begin{aligned}
\rho_{\mathrm{d}} & =\frac{\rho_{\mathrm{w}} \mathrm{G}_{\mathrm{s}}}{1+\mathrm{e}} \\
\rho_{\mathrm{d}} & =\frac{\rho_{\mathrm{b}}}{1+\mathrm{w}} \\
\rho_{\mathrm{d}} & =\frac{\rho_{\mathrm{sat}}}{1+\mathrm{w}_{\mathrm{sat}}}
\end{aligned}
$$

Theoretical Dry Density

$$
\rho_{\mathrm{d}}=\frac{\rho_{\mathrm{w}} \mathrm{G}_{\mathrm{s}}\left(1-\mathrm{A}_{\mathrm{v}}\right)}{1+\mathrm{w} \mathrm{G}_{\mathrm{s}}}
$$

Porosity

$$
n=\frac{e}{1+e}
$$

Air voids

$$
A_{v}=n\left(1-S_{r}\right)
$$

Soil Coefficient of Uniformity $C_{u}=\frac{D_{60}}{D_{10}}$
Soil Coefficient of Curvature $C_{c}=\frac{\left(D_{30}\right)^{2}}{D_{10} \times D_{60}}$
Constant head permeability, $k=\frac{V_{w} L}{A h t}$
Falling head permeabilit, $k=\frac{2.303 a L}{A t} \log \frac{h_{1}}{h_{2}}$
$k_{H}=\frac{1}{H}\left(k_{H 1} x H_{1}+k_{H 2} x H_{2}+\ldots \ldots \ldots+k_{H n} x H_{n}\right)$
$k_{v}=\frac{H}{\left(\frac{H_{1}}{k_{1}}+\frac{H_{2}}{k_{2}}+\frac{H_{3}}{k_{3}}+\ldots \ldots . .+\frac{H_{n}}{k_{n}}\right)}$

School of Engineering
BEng (Hons) Civil Engineering
Semester 2 Examination 2021/22
Ground and Water Studies 1
Module No. CIE4009

Hydraulics Part

Principles of Flow in Pipes

Reynold Number: $\boldsymbol{R}_{\boldsymbol{e}}=\frac{\rho V \boldsymbol{D}}{\boldsymbol{\mu}}=\frac{\boldsymbol{V D}}{\boldsymbol{v}}$
Darcy-Weisbach Friction Head Loss: $\boldsymbol{h}_{f}=\frac{f L}{D} \frac{V^{2}}{2 g}=\left(\frac{8 f l}{\pi^{2} g D^{5}}\right) Q^{2}$

Hagen-Poiseuille Friction Head Loss: $\boldsymbol{h}_{\boldsymbol{f}}=\frac{\mathbf{3 2 \mu L V}}{\boldsymbol{\rho g} \boldsymbol{D}^{2}}$
Minor Head Loss: $\boldsymbol{h}_{\boldsymbol{l}}=\boldsymbol{K} \frac{\boldsymbol{V}^{2}}{2 g}$
Minor Head losses equation for sudden expansions: $\frac{\left(V_{1}-V_{2}\right)^{2}}{2 g}$

Principles of Flow in Open Channels

Steady Uniform flow Equations:
Chezy velocity: $V=C \sqrt{\boldsymbol{R} \boldsymbol{S}_{\mathbf{0}}}$;
Manning velocity: $V=\frac{1}{n} R^{2 / 3} S_{0}^{1 / 2}$

Flows over Weirs:
$\boldsymbol{Q}=\frac{2}{3} C_{d} \boldsymbol{L} \sqrt{\mathbf{2 g}} \boldsymbol{H}^{\mathbf{3} / 2}$ (General flow over Weir)

$\boldsymbol{Q}=\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{C}_{\boldsymbol{d}} \sqrt{\mathbf{2 g}}(\boldsymbol{L}-\mathbf{0 . 2 H}) \boldsymbol{H}^{\mathbf{3} / 2}$ (Unsuppressed Rectangular Weir)
$\boldsymbol{Q}=\frac{\mathbf{8}}{15} \boldsymbol{C}_{\boldsymbol{d}} \boldsymbol{T} \boldsymbol{a n} \frac{\boldsymbol{\theta}}{\mathbf{2}} \sqrt{\mathbf{2} \boldsymbol{g}} \boldsymbol{H}^{\mathbf{5} / 2}$ (Triangular (or V-notch) Weir)
$Q=\frac{2}{3} C_{d} L \sqrt{2 g} H^{3 / 2}+\frac{8}{15} C_{d} \operatorname{Tan} \frac{\theta}{2} \sqrt{2 \boldsymbol{g}} \boldsymbol{H}^{5 / 2}$ (Trapezoidal Weir)

END OF PAPER

[^0]: Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smater than No. 200 sieve size), coarse-grained solls are classfied as follows
 Less than 5 percent
 GW, GP, SW, SP
 More than 12 percent. GM, OC, SM, SC 5 to 12 percent. . Borderline cases requiring dual symboles

