OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE FZE
 BENG(HONS) MECHANICAL ENGINEERING
 TRIMESTER TWO EXAMINATION 2021/2022

ENGINEERING PRINCIPLES 2

MODULE NO: AME4063

Date: Tuesday $\mathbf{2 6}^{\text {th }}$ April 2022
Time: 2:00pm - 4:00pm

INSTRUCTIONS TO CANDIDATES:

CANDIDATES REQUIRE:

There are SIX questions.

Answer TWO Questions from Part A and TWO Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

PART A

Q1.
a) Differentiate the following given equations:
i. $y=12 \ln \left(2 t^{2}+5\right)$
ii. $y=\frac{2 x}{x^{2}+1}$
b) A particle moves in a straight line from a fixed point given by

$$
x=4 t+\ln (1-t)
$$

where ' x 'is the distance travelled in meters and ' t ' is the time taken in seconds.
Determine,
i) The initial velocity and acceleration
ii) The velocity and acceleration after 2.5 s
c) An open rectangular container is to have a volume of $13.5 \mathrm{~m}^{3}$. Determine the least surface area of metal required for the manufacture of rectangular box.

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

Q2.
a) The potential difference between boundaries \mathbf{a} and \mathbf{b} of an electric field is given by:

$$
V=\int_{a}^{b} \frac{Q}{2 \pi r \varepsilon_{0} \varepsilon_{r}} d r
$$

If $\mathrm{a}=10, \mathrm{~b}=20, \mathrm{Q}=2 \times 10^{-6}$ coulombs, $\varepsilon_{0}=8.85 \times 10^{-12} \varepsilon_{r}=2.77$.
Determine the potential difference (V) in volts integrating with respect to the radial distance r .
(7 marks)
b) The average value of a complex voltage waveform is given by:

$$
V_{A V}=\frac{1}{\pi} \int_{0}^{\pi}(10 \sin \omega t+3 \sin 3 \omega t+2 \sin 5 \omega t) d(\omega t)
$$

Where ω is the angular velocity in rad/sec
Evaluate VAv correct to 2 decimal places.
c) Evaluate the following given equations:
I. $\int_{0}^{1} 3 e^{3 t} d t$
II. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(3 \sin 2 x-2 \cos 3 x) d x$
(4 marks)
III. $\int \frac{(2+3 x)^{2}}{\sqrt{x}} \mathrm{~d} x$

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

PLEASE TURN THE PAGE.....

Q3.
a) Determine the particular solution of angular displacement θ (deg), given that it follows the equation,

$$
2 t\left(t-\frac{d \theta}{d t}\right)=5
$$

Given that, when time $t=0, \theta=0$
(9 marks)
b) The rate of cooling of a body is given by,

$$
\frac{d \theta}{d t}=k \theta, \text { where } k \text { is a constant. }
$$

When $\theta=60^{\circ} \mathrm{C}$, at $\mathrm{t}=2$ minutes and $\theta=50^{\circ} \mathrm{C}$, at $\mathrm{t}=5$ minutes.
i. Deduce a general solution for the above first order differential equation.
ii. Determine the time taken to fall to $40^{\circ} \mathrm{C}$, correct to the nearest second.

END OF PART A

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

PART B

Q4. Figure Q4 is a section with the dimensions in cms as shown. Determine the following:

Figure Q4. section
i. the centroid of the section
(10 marks)
ii. the moment of inertia of the section about the 'xx' axis through the centroid.
(6 marks)
iii. the moment of inertia of the section about the 'yy' axis through the centroid.
iv. the radius of gyration

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

Q5 a) A hollow steel shaft transmits 200kW of power at 150rpm. The total angle of twist in a length of 5 m of the shaft is 4°. The permissible shear stress is 70 MPa and the modulus of rigidity of the material is 90 GPa .

Determine the following:
i. the inner diameter of the shaft
(4 marks)
ii. the outer diameter of the shaft
(4 marks)
iii. Differentiate between polar moment of inertia of solid and hollow shafts.
(2 marks)
iv. Define Torsion and Bending equation
(2 marks)
b) A spring loaded with 5 kg weight is extended 650 mm when in equilibrium. The mass is pulled vertically downward through a further distance of 300 mm and is then released from rest so that it oscillates about the equilibrium position. Determine :
i. the stiffness constant ' k ' of the spring and time of oscillation in seconds
(4 marks)
ii. the velocity and acceleration when the weight is at a distance of 100 mm below its equilibrium position.
(4 marks)
c) A car weighing 8000 N accelerates from rest to a speed of $45 \mathrm{~km} / \mathrm{h}$ in a distance of 50 m against a resistance of 100N.Determine the average driving force acting on the car. Using the average force, evaluate the greatest power developed by the engine.

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

PLEASE TURN THE PAGE.....

Q6. a) Define the following terms:
i) coefficient of friction
ii) angle of friction
iii) angle of repose
b) A body requires a pull of 30 N and a push of 36 N to just move it over a rough horizontal plane. Both the pull and the push are inclined at 25° with the horizontal as shown in Figure Q6b.Compute the following:
i) Weight of the body.
ii) Coefficient of friction

(a) Body subjected to a pull

(b) Body subjected to a push

Figure Q6b. Given block

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063

END OF QUESTIONS

PLEASE TURN PAGE FOR FORMULA SHEETS....

FORMULA SHEET

Vectors

$\underline{\mathrm{A}} \cdot \underline{\mathrm{B}}=\quad|\underline{\mathrm{A}}||\underline{\mathrm{B}}| \cos \theta$
Determinants
$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$
Matrices
$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$
Series
$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$
Binomial Distribution

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063
$(q+p)^{n}=q^{n}+n q^{n-1} p+\frac{n(n-1)}{2!} q^{n-2} p^{2}+\frac{n(n-1)(n-2)}{3!} q^{n-3} p^{3}+\cdots$

Partial Fractions

$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$

PLEASE TURN THE PAGE.....

$\frac{F(x)}{(x+a)(x+b)^{2}}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^{2}}$
Trigonometry
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\sin ^{2} x+\cos ^{2} x=1$
$\tan ^{2} \mathrm{x}+1=\sec ^{2} \mathrm{x}$
$\operatorname{cosec}^{2} x=1+\cot ^{2} x$

Differentiation

$\mathrm{y}=\mathrm{uv} \quad \frac{d y}{d x}=\mathrm{u} \frac{d v}{d x}+v \frac{d u}{d x} \quad$ (Product Rule)
$y=\frac{u}{v} \quad \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$ (Quotient Rule)
$\frac{d y}{d x}=\frac{d y}{d t} x \frac{d t}{d x} \quad$ (Chain Rule)
Integration

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x \quad$ (By parts)
$\int \frac{f^{1}(x)}{f(x)} d x=\ln |f(x)|+c$

PLEASE TURN THE PAGE.....

Differential equations

Linear differential equation
$d y / d x+P y=Q$

Integrating factor is $e^{\int P d x}$
Solution is $\mathrm{y} \times I F=\int Q \times I F d x$

Centroid and $2^{\text {nd }}$ Moments of Area

Rectangle $\quad \bar{X}=(b / 2), \bar{Y}=(d / 2), A=b d \quad I_{X X}=\frac{\mathrm{bd}^{3}}{12} \quad \mathrm{I}_{Y Y}=\frac{\mathrm{db}^{3}}{12}$
Circle $\quad \mathrm{xx}=\frac{\pi R^{4}}{4} \quad$ Polar $\mathrm{J}_{\text {solid }}=\frac{\pi D^{4}}{32} \quad \mathrm{~J}_{\text {hollow }}=\pi\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right) / 32$

For composite sections
$\overline{\mathrm{X}}=\frac{\Sigma A i X i}{\Sigma A i}$
$\overline{\mathrm{Y}}=\frac{\Sigma A i Y i}{\Sigma A i}$
Parallel Axis Theorem
$I_{X x}=I_{G G}+A h^{2}$

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063
$\mathrm{I}_{\mathrm{xx}}=\left(\mathrm{I}_{\mathrm{xx}}\right)_{\mathrm{i}}+\Sigma \mathrm{A}_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{i}}-\mathrm{Y}\right)^{2}$
$I_{Y Y}=\left(I_{Y Y}\right)_{i}+\Sigma A_{i}\left(X_{i}-X\right)^{2}$

PLEASE TURN THE PAGE.....

Energy and Momentum

Potential Energy = mgh

Kinetic Energy

$$
\text { Linear }=1 / 2 \mathrm{mv}^{2}
$$

Angular $=1 / 2 \mid \omega^{2}$
Momentum
Linear= mv

Angular $=1 \omega$

Vibrations

Linear Stiffness $k=\frac{F}{\delta}$
Circular frequency $\omega_{n}=\sqrt{\frac{k}{m}}$
Frequency $f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{1}{T_{n}}$

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles 2
Module No. AME4063
$x=r \cos \omega t$
$v=-\omega \sqrt{r^{2}-x^{2}}=-\omega r \sin \omega t$
$a=-\omega^{2} x$
$f=\frac{1}{T}$
$T=\frac{2 \pi}{\omega}$
$\mathrm{M} / \mathrm{I}=\sigma / y=\mathrm{E} / \mathrm{R}$
$P=2 \pi N T$
$\mathrm{T} / \mathrm{J}=G \theta / L=\tau / \mathrm{r}$
$F=\mu N$

END OF FORMULA SHEETS

END OF PAPER

