OFF CAMPUS DIVISION

WESTERN INTERNATIONAL COLLEGE FZE
 BENG(HONS) MECHANICAL ENGINEERING
 TRIMESTER TWO EXAMINATION 2021/2022

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

Date: Saturday 30 ${ }^{\text {th }}$ April 2022
Time: 2:00pm - 4:00pm

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.

Answer TWO Questions from Part A and TWO Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

Graph paper will be provided
CANDIDATES REQUIRE:

Formula Sheet (attached)

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

PART A

Q1. a) In a system of forces, the relationship between two forces in Newton F_{1} and F_{2} is given by:

$$
\begin{aligned}
& F_{1}+2 F_{2}+4=0 \\
& 5 F_{1}+3 F_{2}-1=0
\end{aligned}
$$

Use 'Matrices Method' to solve for F_{1} and F_{2}
(10 marks)
b) Two alternating voltages are given by

$$
V_{1}=10 \sin \omega t \text { volts } ; \quad V_{2}=14 \sin \left(\omega t+\frac{\pi}{3}\right) \text { volts }
$$

Where ω represents angular frequency in rad/sec.

Determine a sinusoidal expression for the resultant $\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$, using sine and cosine rule and compare the results graphically by plotting in graph sheet
(10 marks)
c) Use De Moivre's Theorem to find the $5^{\text {th }}$ power of the complex number $z=$ $2\left(\cos 24^{\circ}+\mathrm{i} \sin 24^{\circ}\right)$. Express the answer in the rectangular form a+bi

Q2. a) Use partial Fractions to expand:

$$
Y(s)=\frac{x^{2}+7 x+3}{x^{2}(x+3)}
$$

(10 marks)
b) The value of a lathe originally valued at AED 30000 depreciates 15% per annum.
i) Calculate its value after 4 years.
\qquad

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

Q2 continued...

ii) If the machine is sold when its value is less than AED 5400. After how many years is the lathe sold.
c) Solve the logarithmic equation

$$
\log x^{4}-\log x^{3}=\log 5 x-\log 2 x
$$

Q3. a) The law connecting frictional force, F and load L for an experiment is given by

$$
F=\mathbf{a L}-M b,
$$

where $a, b \& M$ are constants. Given that when $F=6.84 N ., L=2.3 N, M=4.4$ and when $F=1.23 \mathrm{~N}, \mathrm{~L}=8.5 \mathrm{~N}, \mathrm{M}=6.7$. determine the following:
i) the value of a \& b using determinant method
ii) find the value of F when $L=6.0$ and $M=0$
b) Determine the partial fraction decomposition of each of the following expression.

$$
\frac{4 x^{2}-22 x+7}{(2 x+3)(x-2)^{2}}
$$

c) Solve, correct to 4 significant figures:

$$
e^{(x+1)}=3 e^{(2 x-5))}
$$

END OF PART A

PLEASE TURN THE PAGE FOR PART B...

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

PART B

Q4. A steel block of $300 \mathrm{~mm} \times 100 \mathrm{~mm} \times 40 \mathrm{~mm}$ side is subjected to a force of 5 kN (tension), 6kN (tension) and 4 kN (tension) along x, y and z directions respectively as shown in Figure Q4.

Figure Q4. Steel cube block
Determine the following:
a) Stresses in x, y and z directions
b) Assuming Poisson's ratio as 0.25 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force.
c) If modulus of elasticity $E=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
(8 marks)
d) The change in volume of the block due to loading specified above.
(5 marks)
Total 25 marks
PLEASE TURN THE PAGE.....

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

Q5. a) A compound bar shown in Figure Q5a.consists of three bars made of copper, zinc and aluminium having cross section 500,750 and 1000 square mm respectively. They are rigid connected at their ends. If this compound member is subjected to a longitudinal pull of 250 kN , determine the following:
I. Stress developed in copper bar (5 marks)
II. Stress developed in zinc bar
(5 marks)
III. Stresses developed in aluminium bar (5 marks)

Take modulus of elasticity, E of copper as $1.3 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, E of zinc $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and E of aluminium as $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

> IV. Define compound bar and its rules of calculation
(3 marks)

Figure Q5a. A Compound bar

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062
Q5 continued....
b) If five forces act on a particle as shown in Figure Q5b and the algebraic sum of horizontal components of all these forces is -324.904 kN . Calculate the following:

I. magnitude of ' P '	(4marks)
II. the resultant of all the forces	(3marks)

Figure Q5b. Force Diagram
Total 25 marks

Q6. A simply supported beam carries concentrated lateral loads at C and D, and a uniformly distributed lateral load over the length CD as shown in Figure Q6. Determine:
i. Reaction loads at the support
ii. Construct the shear force diagram for the beam
iii. Construct the bending moment diagram for the beam
(8 marks)
iv. Find the position of maximum bending moment.

Figure Q6. Simply supported beam
Total 25 marks

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062
PLEASE TURN PAGE FOR FORMULA SHEET.....

FORMULA SHEET

Determinants
$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$
Series
$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$
Binomial
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$
Validity $|x|<1$ Partial Fractions

$$
\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}
$$

Page 8 of 10

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$
PLEASE TURN THE PAGE.....
Stress
Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area
Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain

Normal $\quad \varepsilon=\frac{\delta \ell}{\ell}$
Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)
Compound Bars
$P=P_{1}+P_{2}$
$\mathrm{P}=\sigma_{1} \mathrm{~A}_{1}+\sigma_{2} \mathrm{~A}_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,
Elastic Constants
$E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}$

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E} \\
& \varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
& \varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \varepsilon_{v}=\frac{\delta V}{V}
\end{aligned}
$$

PLEASE TURN THE PAGE.....

Compressibility

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

University of Bolton
Western International College FZE
BEng(Hons) Mechanical Engineering
Trimester 2 Examination 2021/2022
Engineering Principles I
Module No. AME4062

END OF FORMULA SHEETS

END OF PAPER

