UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

B. Sc. (Hons) MATHEMATICS

SEMESTER 1: EXAMINATION 2019/20

COMPLEX VARIABLES

MODULE NUMBER: MMA6006

Date: $16^{\text {th }}$ January 2020
Time: 10.00am - 12.15pm

INSTRUCTIONS TO CANDIDATES:

1. Answer all FOUR questions.
2. Each question is worth $\mathbf{2 5}$ marks. The maximum marks possible for each part is shown in brackets.
3. The examination is closed-book.
4. The last two pages contain relevant definitions and results.

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006

1. (a) Consider the following piecewise contour $C=C_{1}+C_{2}$:

Evaluate the integral $\int_{C}(2 \bar{z}-z) d z$.
(b) Let C denote the circle of radius 2 centred at $z=2$ traversed in an anti-clockwise direction starting from $z=4$. Consider the complex function:

$$
f(z)=\frac{5 z+7}{z^{2}+2 z-3}
$$

(i) Draw a sketch of the contour C on an Argand diagram, indicating the starting position, orientation of the contour and the singularities of the function f.
(ii) Use the diagram from (i), Cauchy's theorem and Cauchy's integral formula to evaluate:

$$
\begin{equation*}
\oint_{C} f(z) d z . \tag{10marks}
\end{equation*}
$$

PLEASE TURN THE PAGE

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006
2. (a) Consider the complex function f defined by

$$
f(z)=\frac{z^{3}+1}{z^{3}+z^{2}}
$$

(i) Find and classify the apparent isolated singularities of f arising from the zeros in the denominator.
(ii) Compute the residue of f at each singularity and state, with reasons, whether or not any of the singularities are removable.
(b) Let f be the complex function defined by

$$
f(z)=\frac{2 z}{(z-1)(z-3)}
$$

Find the Laurent series for f on each of the three annular regions centred at $z=0$ where f is holomorphic.

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006
3. (a) Let C denote the circle of radius 2 centred at the origin traversed in the anticlockwise direction. Evaluate the following integral using the residue theorem:

$$
\begin{equation*}
\int_{C} \frac{z}{\cos (z)} d z \tag{5marks}
\end{equation*}
$$

(b) Show that:

$$
\int_{x=-\infty}^{\infty} \frac{\cos (x)}{x^{2}+9} d x=\frac{\pi}{3 e^{3}}
$$

by evaluating a suitable contour integral taken over a semi-circular arc in the upper half plane centred at the origin.
(c) Use Rouche's theorem to show that the polynomial $2 z^{5}+6 z-1$ has four roots in the annulus $\{z \in \mathbb{C}: 1<|z|<2\}$ and one real root in the interval $0<x<1$.

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006
4. A string of unit length is clamped at one end, whereas the other oscillates freely with height $\sin (t)$ at time t. If $u(t, x)$ denotes the height of the string at time t and position x, the motion of the string is determined as a solution to the initial-boundary value problem:

$$
\left\{\begin{aligned}
u_{t t} & =u_{x x} & & \\
u(0, x) & =u_{t}(0, x)=0 & & (0<x<1) \\
u(t, 0) & =0 & & (t>0) \\
u(t, 1) & =\sin (t) & & (t>0) .
\end{aligned}\right.
$$

(a) Use the method of Laplace transforms to show that the solution can be written as the Bromwich contour integral:

$$
u(t, x)=\frac{1}{2 \pi i} \int_{C} \frac{e^{s t}}{1+s^{2}} \frac{\sinh (x s)}{\sinh (s)} d s
$$

where C is a vertical line in \mathbb{C} such that all singularities of the integrand lie to the left of C.
(b) Use the residue theorem to evaluate the integral in (a) and show:

$$
\begin{equation*}
u(x, t)=\frac{\sin (x)}{\sin (1)} \sin (t)+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} \pi^{2}-1} \sin (n \pi x) \sin (n \pi t) \tag{9marks}
\end{equation*}
$$

END OF QUESTIONS

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006

Definitions and Results

ML-estimate: Given a domain $D \subseteq \mathbb{C}$, a continuous function $f: D \rightarrow \mathbb{C}$ and smooth curve $C:[a, b] \rightarrow D$, then

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

where L is the length of C and M is the maximum value of the f on C :

$$
M=\max \{|f(z)|: z \in C\}=\max \{|(f \circ C)(t)|: t \in[a, b]\}
$$

Cauchy's Theorem: Let $D \subset \mathbb{C}$ be a simply connected domain, $f: D \rightarrow \mathbb{C}$ be holomorphic in D and C a piecewise smooth curve. Then

$$
\oint_{C} f(z) d z=0
$$

Cauchy's Integral Formula: Let $f: D \rightarrow \mathbb{C}$ be holomorphic in a simply connected domain D and C denote a simple, piecewise smooth, closed curve in D with counter-clockwise orientation. Then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z=\left\{\begin{aligned}
f\left(z_{0}\right), & \text { if } z_{0} \text { is inside } C \\
0, & \text { if } z_{0} \text { is outside } C
\end{aligned}\right.
$$

If z_{0} is on C, then the integral is improper and may not even exist.

Cauchy's Integral Formula for Derivatives: Let $f: D \rightarrow \mathbb{C}$ be holomorphic in a simply connected domain D and C denote a simple, piecewise smooth, closed curve in D with counter-clockwise orientation. Then for any point z_{0} in the interior of C :

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

PLEASE TURN THE PAGE

School of Engineering
B.Sc. Mathematics

Semester 1: Examination 2019/20
Complex Variables
MMA6006

Residues: The coefficient a_{-1} of $1 /\left(z_{z 0}\right)$ in the Laurent series of a function f about $z=z_{0}$ is called the residue of f. If f has a pole of order n at $z=z_{0}$ it can be computed as

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z)
$$

Residue Theorem: Let C be a simple, closed, piecewise smooth curve and $f: D \rightarrow \mathbb{C}$ be holomorphic in $D \subset \mathbb{C}$ and on C except at a finite number of isolated singularities $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ lying interior to C. Then:

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) .
$$

Rouché's Theorem: Let $f(z), g(z)$ be holomorphic in $D \subset \mathbb{C}$ and let C be a simple closed contour in D not passing through any zeros of f or $f+g$. Assume $|f(z)|>|g(z)|$ for z on C, then $f(z)$ and $f(z)+g(z)$ have the same number of zeros (including multiplicities) inside C.

Laplace Transforms: The Laplace transform of a complex function $f:[0, \infty) \rightarrow \mathbb{C}$ is defined by:

$$
F(s) \equiv \mathcal{L}\{f(t)\}=\int_{t=0}^{\infty} f(t) e^{-s t} d t=\lim _{M \rightarrow \infty} \int_{t=0}^{M} f(t) e^{-s t} d t
$$

in terms of the complex parameter $s=x+i y$. If f is piecewise continuous and of exponential order α then the integral exists for all $\operatorname{Re}(s)>\alpha$. The inverse Laplace transform $\mathcal{L}^{-1}\{F(s)\}$ is given by the Bromwich contour integral:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2 \pi i} \int_{C} F(s) e^{s t} d s
$$

where C is a vertical contour in \mathbb{C} parametrized by $C(t)=\alpha+i t(t \in \mathbb{R})$ such that all singularities of the integrand lie to the left of C. If $F(s)=\mathcal{L}\{f(t)\}$ has isolated singularities at $\left\{s_{1}, \ldots, s_{n}\right\}$ in the half-plane defined by $\operatorname{Re}(s)<\alpha$ and $F(s) \rightarrow 0$ as $|s| \rightarrow \infty$:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\sum_{k=1}^{n} \operatorname{Res}_{s=s_{k}} F(s) e^{s t} .
$$

