UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BSc (Hons) MATHEMATICS

SEMESTER 1 EXAMINATIONS 2019/20

ABSTRACT ALGEBRA
 MODULE NO: MMA4001

INSTRUCTIONS TO CANDIDATES: 1. Answer all FOUR questions.
2. All questions carry equal marks.
3. Maximum marks for each part/question are shown in brackets.

1. (a) Using induction prove that

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

for each natural number n.
(b) If $P(S)$ is the power set of S, show that for a pair of sets S_{1} and S_{2} we have

$$
P\left(S_{1} \cap S_{2}\right)=P\left(S_{1}\right) \cap P\left(S_{2}\right)
$$

(c) Let S_{1}, S_{2} and S_{3} be sets.

Suppose $f: S_{1} \rightarrow S_{2}$ and $g: S_{2} \rightarrow S_{3}$ are mappings. Define the composite mapping $g \circ f$, and state its domain and co-domain.

Show that if f and g are injective then $g \circ f$ is also injective.
2. (a) Construct the Cayley table for each of the groups $\left(\mathbf{Z}_{7}^{*}, \cdot\right)$ and $\left(\mathbf{Z}_{6},+\right)$. Show that these groups are isomorphic.
(b) Suppose that $(\mathbf{G}, *)$ is a group and $H \subseteq G$. State necessary and sufficient conditions for H to be a subgroup of G.

Prove that if H_{1} and H_{2} are subgroups of G then $H_{1} \cap H_{2}$ is also a subgroup of G.
(c) Consider the mapping $f:(\mathbf{Z},+) \rightarrow(\mathbf{Z},+)$ given by $f(n)=5 n$.

Show that f is a homomorphism of groups. State the image, im f. State the kernel $\operatorname{ker} f$, and say what can be deduced from this.
State, with reasons, whether or not the mapping $g:(\mathbf{Z},+), \rightarrow(\mathbf{Z},+)$ given by $f(n)=n+5$ is a homomorphism.
3. (a) Let $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 2 & 7 & 4\end{array}\right)$ and $\pi=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 7 & 5 & 2 & 1 & 4\end{array}\right)$ be permutations in S_{7}. Calculate the following permutations:

$$
\sigma \circ \pi \quad \pi \circ \sigma \quad \sigma^{3} \quad \pi^{-1}
$$

(b) Consider a rectangle

Reflection in the line M_{1} or in the line M_{2} is a symmetry of the figure. Describe the other two symmetries of the figure.

Draw the Cayley table for the group of symmetries of the rectangle.
State the inverse of each element.
(c) Find the centraliser of the matrix

$$
\left(\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right)
$$

in the general linear group $G L(2, \boldsymbol{Q})$.
4. (a) State what is meant by an integral domain and give two examples. Let D be an integral domain. Prove that for all $a, x, y \in D$ with $a \neq 0$

$$
\text { if } a \cdot x=a \cdot y \text { then } x=y \text {. }
$$

(b) Let $z_{1}=3+8 i$ and $z_{2}=4-7 i$ be complex numbers. Calculate $z_{1} Z_{2}$ and $\frac{Z_{1}}{Z_{2}}$. Express each of Z_{1} and z_{2} in polar coordinates. Find Z_{1}^{4} in polar coordinates.
(c) Use the formula $e^{i \theta}=\cos \theta+i \sin \theta$ to verify the following trigonometric identities:

$$
\begin{gathered}
\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \\
\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta
\end{gathered}
$$

(d) Solve the quadratic equation

$$
x^{2}-6 x+34=0
$$

END OF QUESTIONS

