UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) MECHATRONICS (TOP-UP)

SEMESTER 1 EXAMINATION 2019/2020

ELECTRONIC ENGINEERING FOR MECHATRONICS

MODULE NO: MEC6005

Date: Thursday 16 $^{\text {th }}$ January 2020
Time: 2:00pm - 4:00pm

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.
Answer ANY FOUR questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

Formulae sheet is attached at the end of the paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

Question 1

a) A coil of copper wire has a resistance of 200Ω, when its temperature is $0^{\circ} \mathrm{C}$. Determine its resistance at $100^{\circ} \mathrm{C}$ if the temperature coefficient of resistance (TCR) of copper at $0^{\circ} \mathrm{C}$ is $0.0043 /{ }^{\circ} \mathrm{C}$.
b) For the following circuit (Figure Q1b), using superposition theorem or otherwise, find out the current flowing through the 20Ω resistor.

Figure Q1b
c) For the following circuit (Figure Q1c), using nodal analysis or otherwise, find out the current flowing through the 120Ω resistor.

Figure Q1c

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005
Total marks: 25
PLEAE TURN THE PAGE.....

Question 2:

a) For the circuit shown below (Figure Q2a), considering the RLoad as the load resistance

Figure Q2a
(i) Derive the equivalent Thevenin circuit between points " A " and " B ".
[10 marks]
(ii) Derive the equivalent Norton circuit between points "A" and "B".
[5 marks]
b) Using mesh analysis or otherwise, for the circuit shown in Figure Q2b, find out the current flowing and power being dissipated through the 4Ω and 6Ω resistors.

Figure Q2b

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005
[10 marks]
Total Marks: 25
PLEASE TURN THE PAGE.

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

Question 3

a) $\quad \mathrm{A} 47 \mu \mathrm{~F}$ capacitor has 15 V across it. What quantity of charge is stored in it?
b) Draw a diagram of a parallel plate capacitor showing the charge on the plates and the \mathbf{E} field in the region between the plates.
c) Explain what is meant by the dielectric strength \mathbf{E}_{m} of an insulator? [5 marks]
d) For the capacitor charging circuit shown in Figure Q3d below, where the capacitor is initially discharged, sketch two separate graphs for the current I versus time and the capacitor voltage V_{c} versus time.

Figure Q3d; An initially uncharged capacitor being charged through a resistor.
e) Explain with the assistance of a diagram what happens to the structure of the curves for I versus time and V_{c} versus time if the time constant $\tau=R C$ for the circuit increases?

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

Question 4

An AC source of voltage $750 \cos \left(5000 t+30^{\circ}\right)$ is applied to a series RLC circuit as shown in Figure Q4 below.
i) Calculate the total impedance of the circuit, Z.
ii) Calculate the current and phase angle between the voltage and current.
iii) Calculate the resonance frequency.
[5 marks]
iv) Is the circuit inductive or capacitive?
[3 marks]
v) Draw the phasor diagram.

Figure Q4; An RLC series circuit

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

Question 5

a) For the combinational digital circuit shown below in Figure Q5a:

Figure Q5a: Digital Circuit
i) Find out the Boolean expressions at output Q.
ii) Complete the following truth table for this digital circuit.
b) Fill in the blanks by converting the following numbers into their respective missing decimal and binary equivalents:
i) $11000_{2}=$ \qquad ${ }^{10}$
ii) $101010_{2}=$ \qquad 10
iii) $\mathrm{AD}_{16}=$ \qquad 10
iv) \qquad $2=1510$
v) \qquad $16=2310$

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

PLEASE TURN THE PAGE.....

Q5 continued.....

c) What does adding redundant information into numeric and alphabetic codes provide?

Total Marks: 25

Question 6

a) Explain the purpose of Pseudocode in programming and its applications.
[5 marks]
b) Using an example, define what state machines are and explain their purpose.
[5 marks]
c) With the aid of state machines design techniques, design a state diagram showing a simple automated train ticket machine. Take into consideration the following requirements:

- Only 1 person can buy a train journey ticket each time.
- Each journey cost $£ 5.00$ and exact change is not needed.
- Accepts only the following currencies:
- Coins: $£ 1, £ 2$
- Note: £5 and £10.
- Refund of money from the machine is possible at any time.

END OF QUESTIONS

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:
Ohm's law: $V=I R$
Power: $P=I V$
Magnetic flux: $\Phi=B A$
Induced voltage: $V=\Delta \Phi / \Delta t$
Force experienced by charged particle $=q v B \sin \theta$
Motional emf: $E=B l v$

$$
f=\frac{p n}{120}
$$

Magnitude of the Reactance of Inductor L : $X_{L}=2 \pi f L$

Magnitude of the Reactance of Capacitor $C: X_{C}=\frac{1}{2 \pi f C}$
Pythagorean theorem: $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Tangent function: $\tan \mathrm{A}=$ opposite/adjacent
$\mu_{o}=4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}, \epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$H=\frac{N . I}{l}, \quad B=u H$

MMF=N.I
$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}, \quad E=\frac{1}{2} L I^{2}$
$\mathrm{C}=\mathrm{Q} / \mathrm{V}$, $\mathrm{C}=\frac{\epsilon A}{d}$, $\mathrm{E}=\frac{1}{2} C V^{2}$
$v_{L}=L \cdot \frac{d i_{L}}{d t}$
$i_{C}=C \frac{d v_{C}}{d t}$
$f=\frac{p n}{120}$

Transformer voltage ratio: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}, \mathrm{P}=\mathrm{V}_{1} \cdot \mathrm{I}_{1}=\mathrm{V}_{2} . \mathrm{I}_{2}$

School of Engineering
BSc (Hons) Mechatronics (Top-Up)
Semester 1 Examination 2019/20
Electronic Engineering for Mechatronics
Module no. MEC6005

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Summary Table for Series and Parallel RL Círcuits

X_{L} and R in Series	X_{L} and R in Parallel
I the same in X_{L} and R	V_{T} the same across X_{L} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{L}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{L}^{2}}$
$Z=\sqrt{R^{2}+X_{L}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{R} lags V_{L} by 90°	I_{L} lags I_{R} by 90°
$\theta=\arctan \frac{X_{L}}{R}$	$\theta=\arctan \left(-\frac{I_{L}}{I_{R}}\right)$

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_{C} and R in Parallel
I the same in X_{C} and R	V_{T} the same across X_{C} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{C}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{C}^{2}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{C} lags V_{R} by 90°	I_{C} leads I_{R} by 90°
$\theta=\arctan \left(-\frac{X_{C}}{R}\right)$	$\theta=\arctan \frac{I_{C}}{I_{R}}$

