UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

MSC SYSTEM ENGINEERING

SEMESTER ONE EXAMINATION 2019/2020

SIGNAL PROCESSING

MODULE NO: EEM7011

Date: Wednesday 15 ${ }^{\text {th }}$ January 2020 Time: 14:00-16:00

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.
Answer FOUR questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

Question 1

(a). Contrast the different properties of ; Bessel, Butterworth and Chebyshev filters, giving examples of suitable applications.
(6 marks)
(b). Refer to Table Q1 and calculate the components values, for a low-pass 5-order passive Butterworth filter design. The filter should have a 3dB frequency of 500 MHz and be designed for use in a 50Ω source and load circuit, sketch the design.
(7 marks)
(c). Using Table Q1, design a high-pass passive filter circuit.
(d) Describe how low pass filter can be modified to become a band stop filter.
(5 marks)
Table Q1. Butterworth normalised parameters

$\mathrm{k} n \rightarrow$ \downarrow	2	3	4	5	6
1	1.4142	1.0000	0.7654	0.6180	0.5176
2	1.4142	2.0000	1.8478	1.6810	1.4142
3		1.0000	1.8478	2.0000	1.9319
4			0.7654	1.6810	1.9319
5				0.6810	1.4142
6					0.5176

Question 2

It is required to design a digital filter to replace an analogue filter with the following transfer function; $H(s)=\frac{1}{s^{2}+\sqrt{2} s+1}$
(a). Using the BZT method derive the digital transfer function $H z$), assuming a 3dB cut off frequency of 150 Hz and a sampling rate of 1.28 kHz , if $s=\frac{z-1}{z+1}$. (10 marks)
(b). Show your design for $\mathrm{H}(\mathrm{z})$ using delays and feedback.
(c). Derive the recurrence equation for $y[n]$.

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

Question 3

A closed loop control system in shown in the block diagram below:

Where the analogue control law $\mathrm{Kp}=4(2 s+1) /(10 s+1)$ and the plant $\mathrm{Gp}=(0.125) /(s+0.125)$.
(a). It is recommended to to replace the analogue controller Kp with a digital controller with sampling time $\mathrm{T}=0.2$ seconds, design that digital controller.
(b). Determine the closed loop transfer function in the z domain assuming $G o$ is a zero order hold.
(c). Analyse the stability of the closed loop digital system in (b).
(d). Calculate the discrete-time response of the closed system to a unit impulse input For the first four steps.
(5 marks

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

Question 4

(a) Describe the difference between stable and unstable system
(b) In the design of a system to be used in detecting heartrate pattern of unwell patients, a biomedical engineer desires to show a maximum voltage response of 1 V when a heartrate pulse is received and discretely zeros otherwise. If the output signal sequence of the patient's heartrate is given by

$$
x[n]=7\left(\frac{1}{3}\right)^{n} u[n]-6\left(\frac{1}{2}\right)^{n} u[n]
$$

where $u[n]$ is a unit step function applied to ensure unity voltage when the pulse is received and zero otherwise and $u[n]$ given by

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

i). Find the z-transform of the signal
ii). Determine the poles
iii). Determine the zeros
iv). Using an ROC plot, determine if the system is stable or unstable

Question 5

(a) Explain why analogue filters are usually referred to as IIR filters
(b) Differentiate, with one example each, between causal and non-causal signals.
[4 Marks]
(c) Identify any four different types of signals processed in frequency domain
(d) i) State any four methods of designing IIR filter
ii) To approximate the transfer function of an analogue filter to realise its digital IIR filter equivalent, consider the following transfer function

$$
H(s)=\frac{2}{1+s / \omega_{c}}
$$

determine the equivalent z-transform transfer function using bilinear transform method at $\omega_{c}=12 \mathrm{rad} / \mathrm{s}$ and 1.6 Hz sampling frequency.

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

Question 6

(a) State any two difference between recursive and non-recursive filters.
[2 Marks]
(b) State any four advantages of frequency domain analysis over time domain analysis.
[4 Marks]
(c) The discrete Fourier transform of a signal $x[n]$ is given by

$$
X(k)=\sum_{n=0}^{N-1} x_{n} e^{-j \frac{2 \pi n k}{N}}, \quad \forall k=0,1, \cdots, N-1
$$

where k and n are the frequency and time indices, respectively. Considering a signal sequence $x[n]=\{0,1,1,0\}$, find the DFT of the signal.
(d) Both Z-transform and Fourier transform are generally used for signal processing in discrete-time domain, explain why Z-transfer may be preferred than Fourier transform.
(e) Using Z-transform method, find the frequency response of the follows system

$$
y[n]=\frac{1}{6} x[n]+\frac{1}{3} x[n-1]+\frac{1}{6} x[n-2]
$$

[7 Marks]

END OF QUESTIONS

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

Formula Sheet

A Table of Basic Laplace and Z transforms

Time $f(t) \quad$ Laplace $F(s) \quad Z$ transforms

1. $\delta[t]$

1
1
2. $4 t)$

$$
\frac{1}{s}
$$

$$
\frac{z}{z-1}
$$

3. t
4. $e^{-a t}$

$$
\frac{1}{s^{2}}
$$

5. $\frac{1}{\not\left(1-e^{-a t}\right)}$
$\frac{1}{\$ s+a)}$

$$
\frac{\left.\not \& 1-e^{-a T}\right)}{\left(\neq-1 \emptyset z-e^{-a T}\right)}
$$

6. $\sin \omega t$

$$
\frac{\omega}{s^{2}+\omega^{2}}
$$

$$
\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}
$$

7. $\cos \omega t$

$$
\frac{s}{s^{2}+\omega^{2}}
$$

$$
\frac{Z}{Z-e^{-a T}}
$$

$$
\frac{z^{2}-z \cos \omega T}{z^{2}-2 z \cos \omega T+1}
$$

8. $e^{-a t} \sin \omega t$

$$
\frac{\omega}{(s+a)^{2}+\omega^{2}}
$$

$$
\frac{z e^{-a T} \sin \omega T}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}}
$$

$$
\frac{s+a}{s+a)^{2}+\omega^{2}}
$$

$$
\frac{\left.\not \& z-e^{-a T} \cos \omega T\right)}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}}
$$

10. $\sinh \omega t$

$$
\frac{\omega}{s^{2}-\omega^{2}}
$$

$$
\frac{z \sinh \omega T}{z^{2}-2 z \cosh \omega T+1}
$$

11. $\cosh \omega t$

$$
\frac{s}{s^{2}-\omega^{2}}
$$

School of Engineering
MSc System Engineering
Semester One Examination 2019/2020
Signal Processing
Module No. EEM7011

A Table of Basic Sampled data and Z Transforms

signal $\times[\mathrm{n}]$	z Transform $\times(\mathrm{z})$	Region of Convergence
$\mathbf{1} \delta[n]$	1	all z
$\mathbf{2} u[n]$	$\frac{z}{z-1}$	$\|z\|>1$
$\mathbf{3} \beta^{n} u[n]$	$\frac{z}{z-\beta}$	$\|z\|>\|\beta\|$
$\mathbf{4} n u[n]$	$\frac{z}{(z-1)^{2}}$	$\|z\|>1$
$\mathbf{5} \cos (n \Omega) u[n]$	$\frac{z^{2}-z \cos \Omega}{z^{2}-2 z \cos \Omega+1}$	$\|z\|>1$
6. $\sin (n \Omega) u[n]$	$\frac{z \sin \Omega}{z^{2}-2 z \cos \Omega+1}$	$\|z\|>1$
7 $\beta^{n} \cos (n \Omega) u[n]$	$\frac{z^{2}-\beta z \cos \Omega}{z^{2}-2 \beta z \cos \Omega+\beta^{2}}$	$\|z\|>\|\beta\|$
$\mathbf{8} \beta^{n} \sin (n \Omega) u[n]$	$\frac{\beta z \sin \Omega}{z^{2}-2 \beta z \cos \Omega+\beta^{2}}$	$\|z\|>\|\beta\|$

END OF PAPER

