## UNIVERSITY OF BOLTON

# WESTERN INTERNATIONAL COLLEGE FZE <br> BENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING 

## SEMESTER ONE EXAMINATION 2019/2020

## ENGINEERING ELECTROMAGNETISM

## MODULE NO: EEE6012

Date: Saturday $11^{\text {th }}$ January 2020

INSTRUCTIONS TO CANDIDATES:
There are FIVE questions.

Answer any FOUR questions.

All questions carry equal marks.

Marks for parts of questions are shown
in brackets.

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

Q1
a) A vector $\vec{F}=3 x \overrightarrow{a_{x}}+0.5 y^{2} \overrightarrow{a_{y}}+0.25 x^{2} y^{2} \overrightarrow{a_{z}}$ is given at point $\mathrm{P}(3,4$, 2) in the Cartesian co-ordinate system. Express the vector in spherical coordinate.
b) For the object shown in Figure-1, all the points are transformed from Cartesian ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) to cylindrical ( $\mathrm{p}, \phi, \mathrm{z}$ ) form as provided below.

$$
\begin{aligned}
& \mathrm{O}(0,0,0)=\mathrm{O}(0,0,0) \\
& \mathrm{A}(0,0,8)=\mathrm{A}(0,0,8) \\
& \mathrm{B}(0,5,8)=\mathrm{B}\left(5, \frac{\pi}{2}, 8\right) \\
& \mathrm{C}(0,5,0)=\mathrm{C}\left(5, \frac{\pi}{2}, 0\right) \\
& \mathrm{D}(5,5,0)=\mathrm{D}\left(5, \frac{\pi}{3}, 0\right) \\
& \mathrm{E}(5,5,8)=\mathrm{E}\left(5, \frac{\pi}{3}, 8\right)
\end{aligned}
$$



Figure-1

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Q1 continued

Calculate,
(i) The length $C D$
(ii) The surface Area BCDE.
(iii) The volume of the object.
c) A vector $\vec{T}$ is given by the equation,

$$
\vec{T}=\frac{10}{r^{2}} \cos \theta \overrightarrow{a_{r}}+r \sin \theta \cos \emptyset \overrightarrow{a_{\theta}}+\cos \theta \overrightarrow{a_{\emptyset}}
$$

Evaluate the Divergence of $\vec{T}$ at $\left(\frac{1}{2}, \frac{\pi}{4}, 0\right)$

Total 25 marks

## Q2

a) A DC voltage of 30 V applied across the two plates of a parallel plate capacitor having two layers of different dielectric materials as shown in Figure-2. The distance between the two plates of the capacitor is 3 mm , Area of each plate is $1 \mathrm{~m}^{2}$, the relative permittivity of the first dielectric material is 5 and the second dielectric material is 1 . Determine the voltages across each dielectric in the capacitor

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012
Q2 continued over the page

## Q2 continued



Figure-2
b) A finite sheet of the capacitor has a surface charge density $\rho_{s}=x y\left(x^{2}+y^{2}\right) \mathrm{nC} / \mathrm{m}^{2}$. If the finite sheet has a dimension, $0 \leq x \leq 1,0 \leq y \leq 1$ and $Z=0$, Calculate the total charge present in the capacitor.
c) Two point charges 2 mC and 3 mC are located at $(-2,3,1)$ and $(5,2,-3)$ in the capacitor. Calculate
(i) The electric force on 7 nC located at $(0,2,1)$
(ii) Electric field intensity at that point

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Q3

a) A circular conducting loop of radius 40 cm .lies in the $x y$ plane and has a resistance of 20 ohms. If the magnetic flux density in the region is given as $\vec{B}=0.2 \cos 500 t \overrightarrow{a_{x}}+0.75 \sin 400 \mathrm{t} \overrightarrow{a_{y}}+1.2 \cos 314 t \overrightarrow{a_{z}} \quad$ Tesla. Determine the effective value of the induced current in the loop.
b) A conducting bar slides feely over two conducting rails as shown in Figure-3. Calculate the induced voltage in the bar.
i. If the Bar is stationed at $\mathrm{y}=8 \mathrm{~cm}$ and $\vec{B}=4 \cos 10^{6} t \overrightarrow{a_{z}}$ $m W b / \mathrm{m}^{2}$
ii. If the Bar slides at a velocity of $u=20 \overrightarrow{a_{y}} m / S$ and $\vec{B}=4 \overrightarrow{a_{z}} \mathrm{mWb} / \mathrm{m}^{2}$
iii. Calculate the time varying magnetic flux $\phi$ for the time varying magnetic field $\vec{B}=4 \cos 10^{6} t \overrightarrow{a_{z}} \mathrm{mWb} / \mathrm{m}^{2}$


Figure-3

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012
Please turn the page

Q4
a) A telephone line has $R=30 \Omega / \mathrm{km}, \mathrm{L}=100 \mathrm{mH} / \mathrm{km}, G=0$, and $\mathrm{C}=20 \mu \mathrm{~F} / \mathrm{km}$. At $\mathrm{f}=1 \mathrm{kHz}$, obtain:
(i) The characteristic impedance of the line
(ii) The propagation constant
(iii) The phase velocity
b) A certain transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8$ $\mathrm{dB} / \mathrm{m}, \beta=1 \mathrm{rad} / \mathrm{m}$, and $\mathrm{Z}_{0}=60+\mathrm{j} 40 \Omega$. If the line is connected to a source of $10 L 0^{\circ} \mathrm{V}, Z_{g}=40 \Omega$ and terminated by a load of $20+j 50 \Omega$, determine
(i) The input impedance
(ii) The sending-end current
(iii) The current at the middle of the line

## Q5

An antenna with an impedance of $40+j 30 \Omega$, is to be matched to a $100 \Omega$, lossless line with a shorted stub. Determine using smith plot,
(i) The required stub admittance
(ii) The distance between the stub and the antenna
(8 marks)
(iii) The stub length
(iv) The standing wave ratio on each segment of the system

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012
Please turn the page

## Formula sheet

## Coordinate systems:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z} \\
& \phi=\tan ^{-1} \frac{y}{x} \\
& {\left[\begin{array}{l}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{llr}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]}
\end{aligned}
$$

## Differential Length, Surface and volume:

$$
d \mathbf{l}=d \rho \mathbf{a}_{\rho}+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z}
$$

$d \mathbf{S}=\rho d \phi d z \mathbf{a}_{\rho}+d \rho d z \mathbf{a}_{\phi}+\rho d \rho d \phi \mathbf{a}_{z}$
$d v=\rho d \rho d \phi d z$

## Vector calculus:

$\nabla \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Formula Sheet continued

## Electrostatics:

$C=\frac{\varepsilon_{0} \varepsilon_{r} A}{d}$
$C_{T}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$Q=C V$
$D=\frac{Q}{A}$
$E=\frac{D}{\epsilon_{0} \epsilon_{r}}$
$V=E \times d$
$Q=\int_{S} \rho_{S} d S$
$\varepsilon_{0}=8.854 \times 10^{-12} \simeq \frac{10^{-9}}{36 \pi} \mathrm{~F} / \mathrm{m}$
$\overrightarrow{\mathbf{F}}=\frac{Q}{4 \pi \varepsilon_{\mathrm{o}}} \sum_{k=1}^{N} \frac{Q_{k}\left(\mathbf{r}-\mathbf{r}_{k}\right)}{\left|\mathbf{r}-\mathbf{r}_{k}\right|^{3}}$
$\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}}$

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Formula Sheet continued

## Magnetostatics:

$d \emptyset=\vec{B} \cdot \overrightarrow{d S}$
$\emptyset=\int \vec{B} \cdot \overrightarrow{d S}$
$E=4.44 N f \emptyset_{m}$
$V_{\mathrm{emf}}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{S}$
$V_{\mathrm{emf}}=\int_{L}(\mathbf{u} \times \mathbf{B}) \cdot d \mathbf{l}$

## MAXWELL'S EQUATIONS:

$\nabla . E_{s}=0$
$\nabla . \mathrm{H}_{\mathrm{s}}=0$
$\nabla \times \mathrm{H}_{\mathrm{s}}=j \omega \varepsilon_{0} \mathrm{E}_{\mathrm{s}}$
$\nabla x \mathrm{E}_{\mathrm{s}}=-\mathrm{j} \omega \mu_{0} \mathrm{H}_{\mathrm{s}}$

$$
\nabla \times \mathbf{A}=\left[\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right] \mathbf{a}_{\rho}+\left[\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right] \mathbf{a}_{\phi}+\frac{1}{\rho}\left[\frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right] \mathbf{a}_{z}
$$

$\omega / \beta=C / \sqrt{ }\left(\mu_{\mathrm{r}} \varepsilon_{\mathrm{r}}\right)$
$\beta=2 \pi / \lambda$
$\mathrm{E}_{0} / \mathrm{H}_{0}=\sqrt{ }\left(\mu_{0} \mu_{r} / \varepsilon_{0} \varepsilon_{r}\right)$

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Formula Sheet continued

## Wave propagation and Transmission lines

$\varepsilon_{r}=\beta^{2} /\left(\omega^{2} \mu_{0} \mu_{r} \varepsilon_{0}\right)$
$\eta=\sqrt{ }(\mu / \varepsilon)$
$P_{\text {avg }}=E_{0}^{2} / 2 \eta$. $a_{n}$
$P_{\text {total }}=\int P_{\text {avg }} . d S=P_{\text {avg }} . S . a_{n}$
$1 \mathrm{~Np}=8.686 \mathrm{~dB} ., \mathrm{J} 1$ radian $=\mathrm{J} 57.3^{\circ}$ degrees
Propagation Constant, $y=\alpha+j \beta$

$$
\begin{aligned}
& \tanh (x \pm j y)=\frac{\sinh 2 x}{\cosh 2 x+\cos 2 y} \pm j \frac{\sin 2 y}{\cosh 2 x+\cos 2 y} \\
& Z_{\text {in }}=Z_{\mathrm{o}}\left(\frac{Z_{L}+Z_{\mathrm{o}} \tanh \gamma \ell}{Z_{\mathrm{o}}+Z_{L} \tanh \gamma \ell}\right) \\
& I(z=0)=\frac{V_{g}}{Z_{\mathrm{in}}+Z_{g}} \\
& V_{\mathrm{o}}=Z_{\mathrm{in}} I_{\mathrm{o}} \\
& V_{\mathrm{o}}^{+}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{o}}+Z_{\mathrm{o}} I_{\mathrm{o}}\right) \\
& V_{\mathrm{o}}^{-}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{o}}-Z_{\mathrm{o}} I_{\mathrm{o}}\right) \\
& I_{s}(z=\ell / 2)=\frac{V_{\mathrm{o}}^{+}}{Z_{\mathrm{o}}} e^{-\gamma z}-\frac{V_{\mathrm{o}}^{-}}{Z_{\mathrm{o}}} e^{\gamma z} \\
& \text { phase velocity, } v=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \varepsilon}}
\end{aligned}
$$

$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}$

$$
\nabla \times \mathbf{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{z}}
$$

University of Bolton
Western International College FZE
BEng (Hons) Electrical \& Electronic Engineering
Semester 1 Examination 2019/20
Engineering Electromagnetism
Module No. EEE6012

## Formula Sheet continued over the page

## Formula sheet continued

## Waveguides and Optical Fibres:

$$
\begin{aligned}
& f_{c_{m n}}=\frac{u^{\prime}}{2} \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}} \\
& u^{\prime}=\frac{1}{\sqrt{\mu \varepsilon}} \\
& \beta=\omega \sqrt{\mu \varepsilon} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}} \\
& \gamma=j \beta \\
& \eta_{\mathrm{TM}_{m n}}=\eta^{\prime} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}
\end{aligned}
$$

For the $\mathrm{TE}_{10}$ mode

$$
\begin{aligned}
f_{c} & =\frac{u^{\prime}}{2 a} \\
\eta^{\prime} & \simeq \sqrt{\frac{\mu}{\varepsilon}} \\
R_{s} & =\frac{1}{\sigma_{c} \delta}=\sqrt{\frac{\pi f \mu}{\sigma_{c}}}
\end{aligned}
$$

For the $\mathrm{TE}_{10}$ mode

$$
\alpha_{d}=\frac{\sigma \eta^{\prime}}{2 \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}}
$$

$$
\begin{aligned}
& \alpha_{c}=\frac{2 R_{s}}{b \eta^{\prime} \sqrt{1-\left[\frac{f_{c}}{f}\right]^{2}}}\left(0.5+\frac{b}{a}\left[\frac{f_{c}}{f}\right]^{2}\right) \\
& \alpha=\alpha_{d}+\alpha_{c} \\
& P_{a}=\left(P_{d}+P_{a}\right) e^{-2 \alpha z}
\end{aligned}
$$

Numerical aperture, NA $=\operatorname{Sin} \theta_{a}=\sqrt{ }\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)^{*}$

$$
V=\pi d \sqrt{ }\left(n_{1}^{2}-n_{2}^{2}\right) \backslash \lambda
$$

No: of modes, $\mathrm{N}=\mathrm{V}^{2} / 2$
$\alpha \ell=10 \log _{10}[P(0) / P(\rho)]$

