UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL \& ELECTRONICS

 ENGINEERING
SEMESTER ONE EXAMINATION 2019/2020

INTERMEDIATE ELECTRICAL PRINCIPLES \& ENABLING POWER ELECTRONICS

MODULE NO: EEE5013

Date: Monday $13^{\text {th }}$ January 2020

INSTRUCTIONS TO CANDIDATES:

Time: 10:00-12:00

There are FIVE questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:
Formula Sheet (attached).

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

Question 1

a) For the differentiator shown in Figure Q1a, derive the equation for the output waveform if the input signal is; $V s=10 \mathrm{mV} \sin 1000 \mathrm{t}$.
[5 marks]

Figure Q1a An Inverting Operational amplifier
b) Sketch the input and output waveforms labelling period and amplitudes.
[6 marks]
c) If a signal processing circuit is shown in Figure Q1b, calculate the output voltage.

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013
Question 1 continued....

Figure Q1b a signal processing circuit

Total 25 marks

Question 2

(a) A half-wave rectifier circuit is used to charge a 150 V battery as shown in figure Q2a below. Calculate [10 marks] and plot the current i [5 marks] along with vs if $V_{\mathrm{s}}=120 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}$, and $\mathrm{L}=10 \mathrm{mH}$.

Figure Q2a A half-wave rectifier circuit

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013
Question 2 continued....
(b) Explain the basic operation of a square-wave inverter as shown in figure Q2b below [5 marks] and illustrate the concept of AC waveform generation [5 marks].
Draw the waveform across the load and the diodes.

Figure Q2b A square-wave inverter
Total 25 marks

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

Question 3

(a) Draw a circuit diagram for a boost converter [5 marks] and derive an expression for $\frac{V_{\text {out }}}{V_{\text {in }}}$ defining all parameters used in this circuit [7 marks].
(b) Enumerate the basic grounding system then explain what is meant by static grounding.
[4 marks]
(c) For a single-phase inductive load (with parallel resistance and inductance).
i. Prove that the active power is always positive, has an average value of $\frac{V . I}{2} \cos \theta$ and zero average reactive power both pulsating at double supply frequency (2ω) where V and I are the peak values of the voltage and current and θ is the power factor angle of the load.
[5 marks]
ii. Draw the relevant waveforms for v, i, and p.
[4 marks]

Total 25 marks

Question 4

(a) Calculate the line voltages [6 marks] and the line currents [6 marks] of a Y-Y Connection. Given: $\mathrm{V}_{\mathrm{an}}=120 \angle 60^{\circ}$ and $\mathrm{V}_{\mathrm{bn}}=120 \angle-60^{\circ}$. The system is balanced three-phase system. The system impedances are given as follows:
$Z_{\text {source }}=0.4+j 0.3 \Omega, Z_{\text {line }}=0.6+j 0.7 \Omega, Z_{\text {load }}=24+j 19 \Omega$.
b) Assume a delta-connected load, with each leg $Z=100<80^{\circ} \Omega$, is supplied from a 3 phase supply with voltage of 13.8 kV (L-L) source. Find:
i. The complex power of the source and load.
[8 marks]
ii. The power factor at the load and the value of a shunt capacitor that brings the power factor to unity.

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

Question 5

a) List two reasons for cooling silicon amplifier devices.
[2 marks]
b) A silicon transistor having a $\mathrm{T}_{\text {JMAx }}$ rating of $170^{\circ} \mathrm{C}$ will dissipate 30 W when its case temperature is $80^{\circ} \mathrm{C}$, calculate its thermal resistance. [5 marks]
c) If this silicon transistor (part b) is mounted to a heatsink of thermal resistance $3.5^{\circ} \mathrm{C} / \mathrm{W}$, calculate the maximum collector dissipation, if the transistor and heatsink is operated at an ambient temperature of $25^{\circ} \mathrm{C}$.
d) If a mica washer of thermal resistance of $0.65{ }^{\circ} \mathrm{C} / \mathrm{W}$ is inserted between, the transistor and heatsink calculate the collector temperature.
e) A pipe of 25 mm diameter is carrying $0.3 \mathrm{~kg} / \mathrm{s}$ of water the flow then passes into a pipe of 10 mm diameter, if the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, calculate;
i) Calculate the volumetric flow rate and the average velocity of the water in the 25 mm pipe.
ii) Calculate the average velocity of the water in the 10 mm pipe.

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

Formula sheet

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

Converters:

$$
\begin{aligned}
\%_{T H D}^{i} & =100 \times \frac{I_{\mathrm{dis}}}{I_{s 1}} \\
& =100 \times \frac{\sqrt{I_{s}^{2}-I_{s 1}^{2}}}{I_{s 1}} \\
& =100 \times \sqrt{\sum_{h \neq 1}\left(\frac{I_{s h}}{I_{s 1}}\right)^{2}} \\
\mathrm{PF}= & \frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}=\frac{I_{s 1}}{I_{s}} \cos \phi_{1}
\end{aligned}
$$

$$
\mathrm{DPF}=\cos \phi_{1}
$$

$$
\mathrm{PF}=\frac{I_{s 1}}{I_{s}} \mathrm{DPF}
$$

$$
\mathrm{PF}=\frac{1}{\sqrt{1+\mathrm{THD}_{l}^{2}}} \mathrm{DPF}
$$

$$
A_{u}=\sqrt{2} V_{s}(1-\cos u)=\omega L_{s} I_{d}
$$

$$
\cos u=1-\frac{\omega L_{s} I_{d}}{\sqrt{2} V_{s}}
$$

$$
V_{d}=0.45 V_{s}-\frac{\operatorname{area} A_{u}}{2 \pi}=0.45 V_{s}-\frac{\omega L_{s}}{2 \pi} I_{d}
$$

$$
V_{d}=1.35 V_{L L} \cos \alpha-3 \frac{\omega L_{s}}{\pi} I_{d}
$$

$$
\cos (\alpha+u)=\cos \alpha-2 \frac{\omega L_{s}}{\sqrt{2} V_{L L}} I_{d}
$$

$$
\gamma=180-(\alpha+u)
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

$$
\begin{aligned}
V_{L} & =\left[\frac{1}{T} \int_{0}^{T} v_{L}^{2}(t) d t\right]^{1 / 2} \\
V_{d c} & =\frac{1}{T} \int_{0}^{T} V_{L}(t) d t \\
\text { TUF } & =\frac{P_{d c}}{V_{s} I_{s}}=\frac{V_{d k} I_{d c}}{V_{s} I_{s}} \\
\mathrm{RF} & =\frac{V_{a c}}{V_{d c}} \\
\sigma & =\frac{P_{d c}}{P_{L}}=\frac{V_{d c} I_{d c}}{V_{L} I_{L}} \\
\mathrm{FF} & =\frac{V_{L}}{V_{d c}} \quad \text { or } \frac{I_{L}}{I_{d c}} \\
V_{d \alpha} & =\frac{1}{2 \pi} \int_{\alpha}^{\pi} V_{\max } \sin (\omega t) d(\omega t)=\frac{V_{\max }}{2 \pi}(1+\cos \alpha)
\end{aligned}
$$

$V_{p h}=\frac{V}{\sqrt{3}}, I_{p h}=I$ for star connection, $V_{p h}=V, \quad I_{p h}=\frac{I}{\sqrt{3}}$ for delta connection
$S=\sqrt{3} V I \quad$ V.A, $P=\sqrt{3} V I \cos \theta \quad W ., Q=\sqrt{3} V I \sin \theta$ V.A.r
$Q_{C}=\sqrt{3} V I_{C} V . A . r, \quad X_{C}=\frac{V}{\sqrt{3} I_{C}} \Omega$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics
Module No. EEE5013

Three-phase systems

Delta to Star conversion:

$$
\begin{aligned}
& R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{b}} \\
& R_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{c}}
\end{aligned}
$$

Star to Delta conversion:

$$
R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{c} R_{a}}{R_{a}}
$$

Gravity:

Thermal resistance of the interface material:

$$
\theta_{c s}=\frac{(\rho)(t)}{A}
$$

Output voltage of a differentiator circuit:

$$
v_{0}=-R_{2} C_{1} \frac{d v_{I}}{d t}
$$

Compressibility relationship:

General manometer:

$$
\begin{aligned}
R_{a} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}} \\
R_{b} & =\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}} \\
R_{c} & =\frac{R_{3} R_{1}}{R_{1}+R_{2}+R_{3}}
\end{aligned}
$$

$$
9.81 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{gathered}
K=-V \frac{d P}{d V} \\
\Delta \mathrm{P}=|\Delta \rho \mathrm{g} \Delta \mathrm{~h}|
\end{gathered}
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics Module No. EEE5013

Venturi meter:

$$
v_{\mathrm{in}}=C_{D} \sqrt{\frac{2 \Delta P}{\rho_{f}\left[\left(\frac{d_{\text {large }}}{d_{\text {small }}}\right)^{4}-1\right]}}
$$

Force on a submerged wall:

$$
F=\frac{\rho g a h h^{2}}{2}
$$

Drag coefficient:

Flow through a small hole:

$$
C_{D r a g}=\frac{F_{D}}{\frac{1}{2} \rho v^{2} A}
$$

$$
Q=C_{D} \sqrt{\frac{2 \Delta P}{\rho}} A
$$

Flow through a rectangular slit:

$$
Q=\frac{2}{3} C_{D} W \sqrt{2 g}\left[(H o+L)^{\frac{3}{2}}-H o^{\frac{3}{2}}\right]
$$

Tank draining:

$$
h^{\frac{1}{2}}=h_{0}^{\frac{1}{2}}-\frac{C_{D} a \sqrt{2 g}}{2 A} t
$$

Flow over a rectangular weir:

$$
Q=\frac{2}{3} C_{D} W \sqrt{2 g} H^{\frac{3}{2}}
$$

Flow over a V-notch weir:

$$
Q=\frac{8}{15} C_{D} \tan (\theta / 2)(2 g)^{\frac{1}{2}} H^{\frac{5}{2}}
$$

Poisseuille's Law:

Darcy's Law:

$$
Q=-\frac{\pi}{128 \mu} \frac{d P}{d x} D^{4}
$$

$$
\Delta P=\frac{2 f L \rho \bar{u}^{2}}{D}
$$

School of Engineering
B.Eng (Hons) Electrical \& Electronics Engineering

Semester One Examination 2019/2020
Intermediate Electrical Principles \& Enabling Power Electronics Module No. EEE5013

Summary of phase and line voltages/currents for balanced three-phase systems. ${ }^{1}$

Connection Phase voltages/currents Line voltages/currents

Y-Y	$\begin{aligned} & \mathbf{V}_{a n}=V_{p} / 0^{\circ} \\ & \mathbf{V}_{b n}=V_{p} \angle-120^{\circ} \\ & \mathbf{V}_{c n}=V_{p} \angle+120^{\circ} \end{aligned}$ Same as line currents	$\begin{aligned} & \mathbf{V}_{a b}=\sqrt{3} V_{p} / 30^{\circ} \\ & \mathbf{V}_{b c}=\mathbf{V}_{a b} /-120^{\circ} \\ & \mathbf{V}_{c a}=\mathbf{V}_{a b} /+120^{\circ} \\ & \mathbf{I}_{a}=\mathbf{V}_{a n} / \mathbf{Z}_{Y} \\ & \mathbf{I}_{b}=\mathbf{I}_{a} /-120^{\circ} \\ & \mathbf{I}_{c}=\mathbf{I}_{a} /+120^{\circ} \end{aligned}$
Y- Δ	$\begin{aligned} & \mathbf{V}_{a n}=V_{p} / 0^{\circ} \\ & \mathbf{V}_{b n}=V_{p} /-120^{\circ} \\ & \mathbf{V}_{c n}=V_{p} /+120^{\circ} \\ & \mathbf{I}_{A B}=\mathbf{V}_{A B} / \mathbf{Z}_{\Delta} \\ & \mathbf{I}_{B C}=\mathbf{V}_{B C} / \mathbf{Z}_{\Delta} \\ & \mathbf{I}_{C A}=\mathbf{V}_{C A} / \mathbf{Z}_{\Delta} \end{aligned}$	$\begin{aligned} & \mathbf{V}_{a b}=\mathbf{V}_{A B}=\sqrt{3} V_{p} / 30^{\circ} \\ & \mathbf{V}_{b c}=\mathbf{V}_{B C}=\mathbf{V}_{a b} /-120^{\circ} \\ & \mathbf{V}_{c a}=\mathbf{V}_{C A}=\mathbf{V}_{a b} \angle+120^{\circ} \\ & \mathbf{I}_{a}=\mathbf{I}_{A B} \sqrt{3} /-30^{\circ} \\ & \mathbf{I}_{b}=\mathbf{I}_{a} /-120^{\circ} \\ & \mathbf{I}_{c}=\mathbf{I}_{a} /+120^{\circ} \end{aligned}$
$\Delta-\Delta$	$\begin{aligned} \mathbf{V}_{a b} & =V_{p} / 0^{\circ} \\ \mathbf{V}_{b c} & =V_{p} /-120^{\circ} \\ \mathbf{V}_{c a} & =V_{p} /+120^{\circ} \\ \mathbf{I}_{A B} & =\mathbf{V}_{a b} / \mathbf{Z}_{\Delta} \\ \mathbf{I}_{B C} & =\mathbf{V}_{b c} / \mathbf{Z}_{\Delta} \\ \mathbf{I}_{C A} & =\mathbf{V}_{c a} / \mathbf{Z}_{\Delta} \end{aligned}$	Same as phase voltages $\begin{aligned} & \mathbf{I}_{a}=\mathbf{I}_{A B} \sqrt{3} /-30^{\circ} \\ & \mathbf{I}_{b}=\mathbf{I}_{a} /-120^{\circ} \\ & \mathbf{I}_{c}=\mathbf{I}_{a} /+120^{\circ} \end{aligned}$
$\Delta-\mathrm{Y}$	$\begin{aligned} & \mathbf{V}_{a b}=V_{p} / 0^{\circ} \\ & \mathbf{V}_{b c}=V_{p} /-120^{\circ} \\ & \mathbf{V}_{c a}=V_{p} L+120^{\circ} \end{aligned}$ Same as line currents	Same as phase voltages $\begin{aligned} & \mathbf{I}_{a}=\frac{V_{p} L-30^{\circ}}{\sqrt{3} \mathbf{Z}_{Y}} \\ & \mathbf{I}_{b}=\mathbf{I}_{a} /-120^{\circ} \\ & \mathbf{I}_{c}=\mathbf{I}_{a} /+120^{\circ} \end{aligned}$

