[ESS04]

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) ELECTRICAL & ELECTRONIC ENGINEERING

SEMESTER 1 EXAMINATIONS 2019/20

INTRODUCTORY ENGINEERING MATHEMATICS

MODULE NO: EEE4011

Date: Friday 17th January 2020

Time: 10.00-12.00

INSTRUCTIONS TO CANDIDATES:

1.	There are six questions.
	Please attempt <u>FOUR</u> of
	these questions.

- 2. Maximum marks for each part/question are shown in brackets.
- 3. Give all decimal answers correct to <u>THREE</u> decimal places.
- 4. A formula sheet appears on page 7.

3u + 5v

School of Engineering BEng (Hons) Electrical and Electronic Engineering Semester 1 Examinations 2019/20 Introductory Engineering Mathematics EEE4011

Question 1

(a) Consider the 3-dimensional vectors
$$u = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 and $v = \begin{pmatrix} 5 \\ -4 \\ 6 \end{pmatrix}$

Calculate the following: (i)

- (ii) *u.v* (1 mark)
- (iii) |u| (1 mark)
- (iv) |v| (1 mark)
- (v) the angle between u and v. (2 marks)
- (b) Let *A* and *B* be the following matrices:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 5 & -4 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 4 \\ -2 & 3 \\ 0 & 5 \end{pmatrix}$$

Calculate the following matrices:

Explain why the sum of matrices A + B is not defined. (1 mark)

(c) Write the following systems of simultaneous linear equations as an equation of matrices:

$$5x + 3y = 3$$
$$6x + 4y = -6$$

(2 marks)

(2 marks)

By finding the inverse of the square matrix, solve the system of equations.

(6 marks)

Please turn the page.

Question 2

(a) Find the complex solutions of the following quadratic equation:

$$x^2 - 6x + 34 = 0.$$

(5 marks)

Plot the solutions on a sketch of the Argand diagram. (2 marks)

(b) Let $z_1 = 4 + 32j$ and $z_2 = 8 - 5j$ be complex numbers. Calculate the following:

(i)	$z_1 + 4z_2$	(2 marks)
(ii)	$z_1 - z_2$	(2 marks)
(iii)	Z1Z2	(2 marks)
(iv)	$\frac{z_1}{z_2}.$	(3 marks)

(c) Let $z_1 = 64 \angle 100^\circ$ and $z_2 = 2 \angle -40^\circ$ be complex numbers in polar form. Calculate the following complex numbers in polar form:

(i)	Z1Z2	(2 marks)
(ii)	$\frac{Z_1}{Z_2}$	(2 marks)
(iii)	z_{2}^{4}	(2 marks)
(iv)	$\sqrt{z_1}$	(3 marks)

Please turn the page

Question 3

- (a) Differentiate each of the following functions to find $\frac{dy}{dx}$:
 - (i) $y = 2x^4 6x^3 + 5x^2 + 7$ (3 marks)
 - (ii) $y = x^4 \cos 5x$ (4 marks)

(iii)
$$y = \sin x^7$$
 (4 marks)

(iv)
$$y = \frac{x^4}{e^{3x}}$$
 (4 marks)

(b) Find the turning points of the following function:

$$y = x^3 - 9x^2 - 48x + 25.$$

Determine whether each turning point is a local maximum or a local minimum.

(10 marks)

Question 4

(a) Evaluate each of the following definite integrals:

(i)
$$\int_{1}^{3} (9x^2 + 10x - 5)dx$$
 (6 marks)

(ii)
$$\int_{0}^{\frac{\pi}{2}} (10\cos 2x + 8\sin 4x) dx$$

(6 marks)

- (b) Find each of the following indefinite integrals
 - (i) $\int x \sin 5x.dx$ (7 marks) (ii) $\int (7x+3)^8 dx$

(6 marks)

Please turn the page

Question 5

(a) Solve the following differential equation by separating variables:

$$\frac{dy}{dx} = \frac{5x^4}{6\cos 2y}$$

The boundary condition is $y = \frac{\pi}{4}$ when $x = 1$.

(8 marks)

(b) Consider the following linear differential equation:

$$\frac{dy}{dx} - 2y = 16x.$$

- (i) Find the complementary function. (4 marks)
- (ii) Find the particular integral. (4 marks)
- (iii) Hence find the solution given that when x = 0 we have y = 2. (2 marks)
- (c) Find the general solution of the following second order linear differential equation:

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 24y = 0.$$

(7 marks)

Please turn the page

Question 6

(a) The ages in years of ten employees are as follows:

38	24	65	38	28
51	40	34	23	29

Find the median age and calculate the mean age.	(4 marks)
Calculate the standard deviation of the ages.	(4 marks)

(b) Electrolytic capacitors are being manufactured.

It is known that 4% of these fail quality control testing, so that the probability that a single capacitor fails is 0.04.

Calculate the probability that in a batch of six of these capacitors:

(i)	none fail	(3 marks)
(ii)	exactly one fails	(3 marks)
(iii)	exactly two fail	(3 marks)

- (c) Faults in an electrical cable are known to occur on average once per 2km of cable.
 Find the expected number of faults in a 200m drum of cable. (2 marks)
 Calculate the probability that in a 200m drum of cable
 (i) there are no faults (2 marks)
 (ii) there is exactly one fault (2 marks)
 - (iii) there are exactly two faults (2 marks)

END OF QUESTIONS

Page 7 of 7

School of Engineering BEng (Hons) Electrical and Electronic Engineering Semester 1 Examinations 2019/20 Introductory Engineering Mathematics EEE4011

Formulae

Derivatives and Integrals:

Integral	Function	Derivative
$\int y dx$	у	$\frac{dy}{dx}$
X	1	0
$\frac{1}{n+1}x^{n+1}$	x^n	nx^{n-1}
$-\frac{1}{a}\cos ax$	sin ax	$a\cos ax$
$\frac{1}{a}\sin ax$	cos ax	$-a\sin ax$
$\frac{1}{a}e^{ax}$	e^{ax}	<i>ae</i> ^{ax}

Integration by Parts:

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Binomial Distribution:

The probability of r successes in n trials is

$$\binom{n}{r}p^rq^{n-r}$$

where p is the probability of success in a single trial and p + q = 1.

Poisson Distribution:

The probability of *r* successes is

$$\frac{m^r}{r!}e^{-m}$$

where *m* is the expected number of successes. Exam 2019-20.lwp