UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) ELECTRICAL \& ELECTRONIC ENGINEERING

SEMESTER 1 EXAMINATIONS 2019/20

INTRODUCTORY ENGINEERING MATHEMATICS

MODULE NO: EEE4011

Date: Friday 17th January 2020
Time: 10.00-12.00

INSTRUCTIONS TO CANDIDATES:

1. There are six questions. Please attempt FOUR of these questions.
2. Maximum marks for each part/question are shown in brackets.
3. Give all decimal answers correct to THREE decimal places.
4. A formula sheet appears on page 7.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2019/20
Introductory Engineering Mathematics
EEE4011

Question 1

(a) Consider the 3-dimensional vectors $u=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$ and $v=\left(\begin{array}{c}5 \\ -4 \\ 6\end{array}\right)$

Calculate the following: (i) $3 u+5 v$ (2 marks)
(ii) U.v
(1 mark)
(iii) $|u|$
(1 mark)
(iv) $|v|$
(1 mark)
(v) the angle between u and v.
(2 marks)
(b) Let A and B be the following matrices:

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
5 & -4 & 3
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & 4 \\
-2 & 3 \\
0 & 5
\end{array}\right)
$$

Calculate the following matrices:

$A B$	$(4$ marks $)$
$B A$	$(5$ marks $)$

Explain why the sum of matrices $A+B$ is not defined.
(c) Write the following systems of simultaneous linear equations as an equation of matrices:

$$
\begin{aligned}
& 5 x+3 y=3 \\
& 6 x+4 y=-6
\end{aligned}
$$

By finding the inverse of the square matrix, solve the system of equations.

Please turn the page.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2019/20
Introductory Engineering Mathematics
EEE4011

Question 2

(a) Find the complex solutions of the following quadratic equation:

$$
x^{2}-6 x+34=0
$$

Plot the solutions on a sketch of the Argand diagram.
(b) Let $z_{1}=4+32 j$ and $z_{2}=8-5 j$ be complex numbers. Calculate the following:
(i) $z_{1}+4 z_{2}$ (2 marks)
(ii) $Z_{1}-Z_{2}$
(2 marks)
(iii) $Z_{1} Z_{2}$
(2 marks)
(iv) $\frac{Z_{1}}{Z_{2}}$. (3 marks)
(c) Let $z_{1}=64 \angle 100^{\circ}$ and $z_{2}=2 \angle-40^{\circ}$ be complex numbers in polar form. Calculate the following complex numbers in polar form:
(i) $Z_{1} Z_{2}$
(2 marks)
(ii) $\frac{Z_{1}}{Z_{2}}$
(2 marks)
(iii) Z_{2}^{4}
(iv) $\sqrt{Z_{1}}$
(3 marks)

Please turn the page

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 1 Examinations 2019/20
Introductory Engineering Mathematics
EEE4011

Question 3

(a) Differentiate each of the following functions to find $\frac{d y}{d x}$:
(i) $y=2 x^{4}-6 x^{3}+5 x^{2}+7$
(ii) $y=x^{4} \cos 5 x$
(iii) $y=\sin x^{7}$
(iv) $y=\frac{x^{4}}{e^{3 x}}$
(b) Find the turning points of the following function:

$$
y=x^{3}-9 x^{2}-48 x+25 .
$$

Determine whether each turning point is a local maximum or a local minimum.

Question 4

(a) Evaluate each of the following definite integrals:
(i) $\int_{1}^{3}\left(9 x^{2}+10 x-5\right) d x$
(ii) $\int_{0}^{\frac{\pi}{2}}(10 \cos 2 x+8 \sin 4 x) d x$
(b) Find each of the following indefinite integrals
(i) $\int x \sin 5 x . d x$
(7 marks)
(ii) $\quad \int(7 x+3)^{8} d x$

Question 5

(a) Solve the following differential equation by separating variables:

$$
\frac{d y}{d x}=\frac{5 x^{4}}{6 \cos 2 y}
$$

The boundary condition is $y=\frac{\pi}{4}$ when $x=1$.
(b) Consider the following linear differential equation:

$$
\frac{d y}{d x}-2 y=16 x .
$$

(i) Find the complementary function.
(ii) Find the particular integral.
(iii) Hence find the solution given that when $x=0$ we have $y=2$. (2 marks)
(c) Find the general solution of the following second order linear differential equation:

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-24 y=0
$$

Question 6

(a) The ages in years of ten employees are as follows:

38	24	65	38	28
51	40	34	23	29

Find the median age and calculate the mean age.
Calculate the standard deviation of the ages.
(b) Electrolytic capacitors are being manufactured.

It is known that 4% of these fail quality control testing, so that the probability that a single capacitor fails is 0.04 .

Calculate the probability that in a batch of six of these capacitors:
(i) none fail (3 marks)
(ii) exactly one fails (3 marks)
(iii) exactly two fail
(c) Faults in an electrical cable are known to occur on average once per 2 km of cable.

Find the expected number of faults in a 200 m drum of cable.
Calculate the probability that in a 200 m drum of cable
(i) there are no faults (2 marks)
(ii) there is exactly one fault
(iii) there are exactly two faults

END OF QUESTIONS

Formulae

Derivatives and Integrals:

Integral	Function	Derivative
$\int y d x$	y	$\frac{d y}{d x}$
x	1	0
$\frac{1}{n+1} x^{n+1}$	x^{n}	$n x^{n-1}$
$-\frac{1}{a} \cos a x$	$\sin a x$	$a \cos a x$
$\frac{1}{a} \sin a x$	$\cos a x$	$-a \sin a x$
$\frac{1}{a} e^{a x}$	$e^{a x}$	$a e^{a x}$

Integration by Parts:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Binomial Distribution:

The probability of r successes in n trials is

$$
\binom{n}{r} p^{r} q^{n-r}
$$

where p is the probability of success in a single trial and $p+q=1$.

Poisson Distribution:

The probability of r successes is

$$
\frac{m^{r}}{r!} e^{-m}
$$

where m is the expected number of successes.

