SEMESTER ONE EXAMINATION 2019/2020

ENGINEERING MATHEMATICS AND STRUCTURES

MODULE NO: CIE5004

Date: Saturday 11 $^{\text {th }}$ January 2020

INSTRUCTIONS TO CANDIDATES:

Time: 10.00am-1.00pm

There are FOUR questions on this paper. Answer ALL questions.

Answer Section A and Section B questions in separate answer books.

Marks for parts of questions are shown in the brackets.

This examination paper carries a total of $\mathbf{1 0 0}$ marks.

Formula sheet to be used in Section B is attached on Page 6 of this paper.
All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

SECTION A: STRUCTURES

Question 1

A three-pin frame is shown in Figure Q1. The frame is supported at A and G by pins and a third pin is positioned at D . There is a vertical load of 12 kN acting at C and a horizontal load of 24 kN acting at point F.
a. Determine the magnitudes and directions of the vertical and horizontal reactions at A and G .
b. Draw the Axial Force Diagram.
c. Draw the Shear Force Diagram.
d. Draw the Bending Moment Diagram.

For parts b, c and d, show all important values on the diagrams and produce accompanying calculations to show how these values have been derived.

Total 25 marks

Figure Q1

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

Question 2

Figure Q2
A simply supported beam ABCD carries a uniformly distributed load of $3.0 \mathrm{kN} / \mathrm{m}$ between A and B, point loads of $4 \mathrm{kN}, 6 \mathrm{kN}$ at B and C respectively, and a uniformly distributed load of $5.0 \mathrm{kN} / \mathrm{m}$ between B and D as shown in Figure Q2. The beam has uniform rigidity El.
a. Use the method of Macaulay to calculate
i. Rotation (Slope) at A
ii. Vertical Deflection at B
b. Estimate the value of ' x ' at which the slope will be zero and hence find the maximum deflection of the beam.

Formula for the deflection of a beam: $M=-E I \frac{d^{2} v}{d x^{2}}$
Total 25 marks
End of section A

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

SECTION B: ENGINEERING MATHEMATICS

Question 3

a. The masses of 50 ingots in kilograms are measured correct to the nearest 0.1 kg and the results are shown in Table Q3.

Table Q3

Weight measured (kg)	Frequency
$7.1-7.3$	3
$7.4-7.6$	5
$7.7-7.9$	9
$8.0-8.2$	14
$8.3-8.5$	11
$8.6-8.8$	6
$8.9-9.1$	2

(i) In the graph sheet provided, draw a histogram depicting the results.
(ii) Determine the mean, median and modal values of the distribution.
(iii) Determine the Standard Deviation
b. Nine concrete cubes are made from an onsite concrete mix. Extreme heat during the first two days of curing has resulted in the probability of the cubes curing too quickly and cracking being 0.29. Calculate the probability, correct to 3 decimal places, and the number of:
(i) Exactly 5 cubes are cracked
(ii) At least 3 cubes are cracked
(iii) Utmost 4 cubes

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

Question 4

a. Table Q4 below gives the number of road accidents on a stretch of road during a 200-day period

Table Q4

Number of accidents, \mathbf{x}	0	1	2	3	4	5	$6+$
Number of months, \mathbf{f}	91	61	30	14	3	1	0

(i) Chose an appropriate statistical model to fit to the data explaining the reasoning for your choice.
(ii) Test both the goodness of fit and "too good to be true" using a 5% level of significance. The χ^{2} distribution chart is provided on page 8 .
b. The weights of a manufacturer's bags of aggregate are normally distributed with a mean of 20 kg and a standard deviation of 0.2 kg . In a batch of 160 bags delivered to a contractor, calculate the expected number of bags whose:
(i) Weights are between 19.3 kg and 20.3 kg .
(ii) Weights are below 19.2 kg
(iii) Weights are over 20.6kg.

The Standard normal distribution chart is provided on page 7

Total 25 marks

END OF SECTION B

END OF QUESTIONS

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

Formula Sheet

1. Mean and Standard Deviation

For n values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$

$$
\bar{x}=\frac{\sum \mathrm{x}}{\mathrm{n}} ; \quad \mathrm{s}=\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}
$$

2. Chi square test

$$
\lambda^{2}=\frac{\sum(O-E)^{2}}{E} \quad \mathrm{v}=(\mathrm{k}-\mathrm{m})
$$

3. Binomial expansion

$$
(q+p)^{n}=q^{n}+n q^{n-1} p+\frac{n(n-1) q^{n-2} p^{2}}{2!}+\frac{n(n-1)(n-2) q^{n-3} p^{3}}{3!}+\ldots .
$$

4. Normal Distribution

$$
z=\frac{x-\mu}{\sigma}
$$

5. Poisson Distribution

$$
\operatorname{Pr}(x)=e^{-\mu} \mu^{x} / x!
$$

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2019/2020
Engineering Mathematics and Structures
Module No. CIE5004

Formula Sheets continued

Standard Normal Distribution Table

z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.0	0.0000	0040	0080	0120	0160	0199	0239	0278	0319	0359	4	8	12	16	20	12	28	32	36
0.1	0.0398	0438	0478	0517	0557	0596	0636	0675	0714	0753	4	8	12	16	20	24	28	32	36
0.2	0.793	0832	0871	0910	0948	0987	1026	1064	1103	1141	4	8	12	16	19	23	27	31	35
0.3	0.1179	1217	1255	1293	1331	1368	1406	1443	1480	1517	4	8	11	15	19	23	27	30	34
0.4	0.1554	1491	1628	1664	1700	1736	1772	1808	1844	1879	4	7	11	14	18	22	27	29	33
0.5	0.1915	1950	1985	2019	2054	2088	2123	2157	2190	2224	3	7	10	14	17	20	24	27	31
0.6	0.2257	2291	2324	2357	2389	2422	2454	2486	2517	2549	3	7	10	13	16	19	22	26	28
0.7	0.2580	2611	2642	2673	2704	2734	2764	2794	2823	2852	3	6	9	12	15	18	21	24	27
0.8	0.2881	2910	2939	2967	2995	3032	3051	3078	3106	3133	3	6	8		14	17	19	22	25
0.9	0.3159	3186	3212	3238	3264	3289	3315	3340	3365	3389	3	5	8		13	15	18	21	23
1.0	0.3413	3438	3461	3485	3508	3531	3554	3577	3599	3621	2	5	7	9	12	14	16	18	21
1.1	0.3643	3665	3686	3708	3729	3749	3770	3790	3810	3830	2	4	6	8	11	13	15	17	19
1.2	0.3849	3869	3888	3907	3925	3944	3962	3980	3997	4015	2	4	6	7	9	11	13	15	17
1.3	0.4032	4049	4066	4082	4099	4115	4131	4147	4162	4177	2	3	5	6	8	10	11	13	15
1.4	0.4192	4207	4222	4236	4251	4265	4279	4292	4306	4319	1	3	4	6	7	9	10	11	13
1.5	0.4332	4345	4345	4357	4382	4394	4406	4418	4429	4441	1	2	4	5	6	7	7	8	9
1.6	0.4452	4452	4474	4484	4495	4505	4515	4525	4535	4545		2	3	4	5	6	7	8	9
1.7	0.4554	4564	4573	4592	4591	4599	4608	4616	4625	4633	1	2	3	4	5	5	6	7	8
1.8	0.4641	4564	4573	4592	4591	4599	4608	4616	4625	4633	1	2	3	4	5	6	5	6	6
1.9	0.4713	4719	4726	4732	4738	4744	4750	4756	4761	4767	1	1	2	2	3	4	4	5	5
2.0	0.4772	4778	4783	4788	4793	4798	4803	4808	4812	4817	1	1	2	2	3	3	4	4	5
2.1	0.4821	4826	4830	4834	4838	4842	4846	4850	4854	4857	0	1	1	2	2	2	3	3	4
2.2	0.4861	4865	4868	4871	4875	4878	4881	4884	4887	4890		1	1	1	2	2	2	3	3
2.3	0.4893	4896	4898	4901	4904	4906	4909	4911	4913	4916	0	1	1	1	1	2	2	2	2
2.4	0.4918	4920	4922	4925	4927	4929	4931	4932	4934	4936		0	1	1	1	1	1	2	2
2.5	0.4938	4940	4941	4943	4945	4946	4940	4949	4931	4952	0	0	0	1	1	1	1	1	1
2.6	0.4953	4955	4956	4957	4959	4960	4961	4962	4963	4964	0	0	0	0	1	1	1	1	1
2.7	0.4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	0	0	0	0	0	1	1	1	1
2.8	0.4974	4975	4976	4977.	4977	4978	1979	4980	4980	4981	0	0	0	0	0	0	0	1	1
2.9	0.4981	4981	4982	4983	4983	4984	4984	4985	4986	4986	0	0	0	0	0	0	0	0	0
3.0	0.4987	Columns giving values of $\operatorname{Pr}(z)=$ shaded area under graph N.B. Only the first column shows ' 0 .' . In other columns, it is assumed.									Columns of mean difference in $\operatorname{Pr}(z)$								
3.1	0.4990																		
3.2	0.4993																		

Formula Sheets continued over the page

University of Bolton
Western International College FZE
BEng（Hons）Civil Engineering
Semester 1 Examination 2019／2020
Engineering Mathematics and Structures
Module No．CIE5004

Formula Sheets continued

	$\overline{8}$	 	 	等枵守家	 	
	$\stackrel{\text { \％}}{8}$	 	鱼웅웅ㅇㅇㅇ 		守守品先毎	
	ㅎ．	બが	Bio Nল্লু Mo po	 	守守守守宛	
	\％	ஸ	 	管品NㅜN 유욱	品产無象然 	
	¢	 	 	 山్లう	があ 	
	$\stackrel{4}{8}$	 	Be io io NֻN	\hat{C}_{6}°	 	
	은	 	 N込先べ	$\stackrel{\circ}{0}$	 	
	\＄	 	皆品品荡哭 더N Nึ Ni	줃응 \mathscr{B}_{0}° 	 	
	ึฺ̣	 		 	 	
4	¢े	 		品䍐気品N 	 Niल户	岕芯出范
	$\stackrel{\square}{6}$	峖	ద్ల్ల్ల్ల్ల్ల్ల్ల్ల 	ल్ల్ల్ల్ल్ల్ల్ల 	内్N゙ બ్Nべ心	Nimempl
	？	 	N		 	
	$\stackrel{\text { N }}{\sim}$		$\stackrel{+}{+} \stackrel{+}{\top} \stackrel{\oplus}{\square}$	志品品会感 ¢ べが宗	 	
	¢	 	둥 웅욷 $\stackrel{\mathrm{N}}{\mathrm{N}} \stackrel{\mathrm{M}}{\mathrm{m}} \mathrm{j}$	等示页品号 		
	8	 		 		
$\begin{array}{ll} \text { 윽 } & \text { 틀 } \\ \text { 을 } & \text { 윤 } \end{array}$	$\stackrel{\square}{\circ}$				 	
年	$\stackrel{10}{6}$	 		 으우쑨		
※						
	$\stackrel{\otimes}{\square}$	 	－人Nós	๓ が		
$\begin{array}{ll} 0 & \text { n } \\ \text { 등 } & \text { 을 } \\ 0 & \text { 은 } \end{array}$	\％	会馬以 			 べ べ がず	
$\begin{array}{ll} 0 & 5 \\ \frac{5}{0} & \frac{5}{0} \\ \underset{\sim}{0} & \sim \end{array}$	\％	 	等合莴志内心め心	$\infty \propto$	응ㅇㅇㅇㅁㅇㄷㅇ 	
$\begin{array}{ll} \overline{0} & \vdots \\ 0 & 0 \end{array}$	11					
$\begin{array}{ll} \frac{0}{\sigma} & \frac{0}{\square} \\ \boxed{0} & \end{array}$	\bigcirc		¢ミツのロ		\％Now	

