SCHOOL OF ENGINEERING

BENG (HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2019/2020

ADVANCED THERMOFLUIDS AND CONTROL SYSTEMS

MODULE NO: AME6015

Date: Thursday $16^{\text {th }}$ January 2020	Time: 10:00am - 12:00pm
INSTRUCTIONS TO CANDIDATES:	There are SIX questions.
	Answer any FOUR questions.
	All questions carry equal marks.
	Marks for parts of questions are shown in brackets.
	This examination paper carries a total of 100 marks.
	All working must be shown. numerical solution to a question obtained by programming an electronic calculator will not be accepted.
Candidates Require:	Thermodynamics properties of fluids (provided)
	Formula sheet (provided) Density of water = 1000kg/m

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015

Q1
a) Steam at 7 bar, dryness fraction 0.9 expands reversibly at constant pressure until the temperature is $200{ }^{\circ} \mathrm{c}$. Calculate the work input and heat supplied per unit mass of steam during the process.
(15 Marks)
b) Steam at 0.05 bar, $100{ }^{\circ} \mathrm{C}$ is to be condensed completely by a reversible constant pressure process .Calculate the heat rejected per kilogramme of steam and the change of specific entropy.
(10 Marks)
Total 25 Marks
Q2
a) Derive the Darcy Weisbach Equation $\mathrm{h}_{\mathrm{f}}=\frac{f L V^{2}}{2 g D}$ for the loss of Head due to friction in a
Pipeline using the Energy equation $\frac{P_{1}}{\rho g}+Z_{1}+\frac{V_{1}{ }^{2}}{2 g}=\frac{P_{2}}{\rho g}+Z_{2}+\frac{V_{2}{ }^{2}}{2 g}+H L$
Where $\mathrm{HL}=$ the friction head loss hf_{f}
(17 Marks)
b) Oil with specific gravity of 0.85 with kinematic viscosity of $6 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ flows in a 15 cm pipe at a rate of $0.020 \mathrm{~m}^{3} / \mathrm{s}$. What is the head loss per 100 m length of pipe?
(8 Marks)
Total 25 Marks
Q3
a) A Prototype gate valve, which will control the flow I a pipe system conveying paraffin, is to be studied in a model. The pressure drop ΔP is expected to depend upon the gate opening h, the overall depth d, the velocity V, density ρ and viscosity μ.Perform dimensional analysis to obtain the relevant nondimensional groups.
(15 Marks)
b) A Carnot engine is used in a nuclear power plant. It receives 1500 Mw of power as a heat transfer from a source at 327 o c and rejects thermal waste to a nearby river at $27^{\circ} \mathrm{C}$. The River temperature rises by $3^{\circ} \mathrm{c}$ because of this power rejection by the plant, calculate:
i) The mass flow rate of the river
ii) The efficiency of the power plant

Take the value of specific heat capacity $\mathrm{C}_{\mathrm{p}}=4.177 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Take $\mathrm{Q}^{*}=\mathrm{m}^{*}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)$ and $\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
PLEASE TURN THE PAGE.....
Q4 A simplified position control system for an industrial robotic arm is shown in Figure Q4. The system is under a unit step input.

Figure Q4 A simplified position control system

The design criteria for this system are:
Settling time < 2 sec
Overshoot < 5\%
Steady state error $=0.1$ (for a unit parabolic input $=1 / \mathrm{s}^{3}$)
a) Design a PID controller to determine the parameters $\mathrm{K}_{\mathrm{p}}, \mathrm{K}_{\mathrm{i}}$, and K_{d} and clearly identify the design procedure.
b) Describe, helped by equations and sketches, how the error item is handled by proportional, integral and derivative controller.

Q5. A translational mechanical system is shown in Figure Q5.
a) Derive the differential equations describing the behaviour of the system.
b) Select the state variables and transfer the differential equations obtained from Q5(a) above to the relevant first-order differential equations.

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
PLEASE TURN THE PAGE.....
Q5 continued...

Figure Q5 A Translational Mechanical System
c) Determine the state space equations and system matrices A, B, C and D, where A, B, C, and D have their usual meaning.
(10 marks)
d) Analyse the following system's controllability and observability:

$$
A=\left[\begin{array}{cc}
3 & -8 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
6 \\
2
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & -5
\end{array}\right]
$$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015

Q6. An automation assembly model is shown in Figure Q6, in which the computer performs the function of controller to control the assembly process.

Figure Q6 An automation assembly control system
a) Find the sampled-data transfer function, $\operatorname{Gsys}(z)=\frac{\text { Output }}{\text { Input }}$ for the digital assembly control system . The sampling time, T , is 0.15 seconds.
(10 marks)
b) For a unit step input, find the steady-state error for the control system.
(3 marks)
c) Check the stability of the system.
d) If the controller has a 10 bit Analogue to Digital Converter with the signal range between -16 Volt to +16 Volt:
(i) What is the resolution of the AD converter?
(2 marks)
(ii) What integer number represented a value of 7.5 Volts?
(iii) What voltage does the integer 350 represent?
(iv) What voltage does 1011001110 represent?

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
PLEASE TURN THE PAGE FOR FORMULA SHEETS AND PROPERTY TABLES...

Formula sheet

Blocks with feedback loop

$\mathrm{G}(\mathrm{s})=\frac{G o(s)}{1+G o(s) H(s)}$ (for a negative feedback)
$\mathrm{G}(\mathrm{s})=\frac{G o(s)}{1-G o(s) H(s)}$ (for a positive feedback)

Steady-State Errors

$e_{s s}=\lim _{s \rightarrow 0}\left[s \frac{1}{1+G_{o}(s)} \theta_{i}(s)\right]$ (for the closed-loop system with a unity feedback)
$e_{s s}=\lim _{s \rightarrow 0}\left[s \frac{1}{1+\frac{G_{0}(s)}{1+G_{0}(s)[H(s)-1]}} \theta_{i}(s)\right]$ (if the feedback $\mathrm{H}(\mathrm{s}) \neq 1$)
$e_{S S}=\frac{1}{1+\lim _{z \rightarrow 1} G_{o}(z)} \quad$ (if a digital system subjects to a unit step input)

Laplace Transforms

A unit impulse function 1

A unit step function

A unit ramp function $\frac{1}{s^{2}}$

First order Systems

$$
\begin{aligned}
& G(s)=\frac{\theta_{o}}{\theta_{i}}=\frac{G_{s s}(s)}{\tau s+1} \\
& \tau\left(\frac{d \theta_{o}}{d t}\right)+\theta_{o}=G_{s s} \theta_{i} \\
& \theta_{O}=G_{s s}\left(1-e^{-t / \tau}\right)(\text { for a unit step input) } \\
& \theta_{O}=A G_{s s}\left(1-e^{-t / \tau}\right) \text { (for a step input with size A) } \\
& \theta_{o}(t)=G_{s s}\left(\frac{1}{\tau}\right) e^{-(t / \tau)} \quad \text { (for an impulse input) }
\end{aligned}
$$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015

Second-order systems

$$
\begin{aligned}
& \frac{d^{2} \theta_{o}}{d t^{2}}+2 \zeta \omega_{n} \frac{d \theta_{o}}{d t}+\omega_{n}^{2} \theta_{o}=b_{o} \omega_{n}^{2} \theta_{i} \\
& G(s)=\frac{\theta_{o}(s)}{\theta_{i}(s)}=\frac{b_{o} \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
\end{aligned}
$$

$\omega \mathrm{dtr}=1 / 2 \pi \quad \omega_{\mathrm{d}} \mathrm{t}_{\mathrm{p}}=\pi$
P.O. $=\exp \left(\frac{-\zeta \pi}{\sqrt{\left(1-\zeta^{2}\right)}}\right) \times 100 \%$
$\mathrm{t}_{\mathrm{s}}=\frac{4}{\zeta \omega_{n}} \quad \omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{ }\left(1-\zeta^{2}\right)$

Controllability: $R=\left[B A B A^{2} B \ldots . . A^{(n-1)} B\right]$
Observability:

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
$\mathcal{O}=\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ \vdots \\ C A^{n-1}\end{array}\right]$
PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015

Table 4.1 Laplace transforms

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
Table 15.1 z-transforms

Sampled $f(t)$, sampling period T	$F(z)$
Unit impulse, $\delta(t)$	1
Unit impulse delayed by $k T$	z^{k}
Unit step, $u(t)$	$\frac{z}{z-1}$
Unit step delayed by $k T$	$\frac{z}{z^{k}(z-1)}$
Unit ramp, t	$\frac{T z}{(z-1)^{2}}$
t^{2}	$\frac{T^{2} z(z+1)}{(z-1)^{3}}$
$\mathrm{e}^{-a t}$	$\frac{z}{z-\mathrm{e}^{-a T}}$
$1-\mathrm{e}^{-a t}$	$\frac{z\left(1-\mathrm{e}^{-a T}\right)}{(z-1)\left(z-\mathrm{e}^{-a T)}\right.}$
$t \mathrm{e}^{-a t}$	$\frac{T z \mathrm{e}^{-a T}}{\left(z-\mathrm{e}^{-a T)^{2}}\right.}$
$\mathrm{e}^{-a t}-\mathrm{e}^{-b t}$	$\frac{\left(\mathrm{e}^{-a T}-\mathrm{e}^{-b T}\right) z}{\left(z-\mathrm{e}^{-a T}\right)\left(z-\mathrm{e}^{-b T}\right)}$
$\sin \omega t$	$\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}$
$\cos \omega t$	$\frac{z(z-\cos \omega T)}{z^{2}-2 z \cos \omega T+1}$
$\mathrm{e}^{-a t} \sin \omega t$	$\frac{z \mathrm{e}^{-a T} \sin \omega T}{z^{2}-2 z \mathrm{e}^{-a T} \cos \omega T+\mathrm{e}^{-2}}$
$\mathrm{e}^{-a t} \cos \omega t$	$\frac{z\left(z-\mathrm{e}^{-a T} \cos \omega T\right)}{z^{2}-2 z \mathrm{e}^{-a T} \cos \omega T+\mathrm{e}^{-2}}$

Table $15.2 z$-transforms

$f[k]$	$f[0], f[1], f[2], f[3], \ldots$	$F(z)$
$1 u[k]$	$1,1,1,1, \ldots$	$\frac{z}{z-1}$
a^{k}	$a^{0}, a^{1}, a^{2}, a^{3}, \ldots$	$\frac{z}{z-a}$
k	$0,1,2,3, \ldots$	$\frac{z}{(z-1)^{2}}$
$k a^{k}$	$0, a^{1}, 2 a^{2}, 3 a^{3}, \ldots$	$\frac{a z}{(z-a)^{2}}$
$k a^{k-1}$	$0, a^{0}, 2 a^{1}, 3 a^{2}, \ldots$	$\frac{z^{2}}{(z-a)^{2}}$
$\mathrm{e}^{-a k}$	$\mathrm{e}^{0}, \mathrm{e}^{-a}, \mathrm{e}^{-2 a}, \mathrm{e}^{-3 a}, \ldots$	$\frac{z}{z-\mathrm{e}^{-a}}$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
$\mathrm{W}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}-1}$
$\mathrm{W}=\mathrm{P}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)$
$W=P V \ln \left(\frac{V_{2}}{V_{1}}\right)$
$\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{A} \sqrt{ } 2 \mathrm{gh}$
$V_{1}=C \sqrt{2 g h_{2}\left(\frac{\rho g_{m}}{\rho g}-1\right)}$
$\sum \mathrm{F}=\frac{\Delta \mathrm{M}}{\Delta \mathrm{t}}=\Delta \mathrm{M}$
$\mathrm{F}=\rho \mathrm{QV}$
$\operatorname{Re}=V L \rho / \mu$
$d Q=d u+d w$
$\mathrm{du}=\mathrm{cudT}$
$d w=p d v$
$\mathrm{pv}=\mathrm{mRT}$
$h=h_{f}+\mathrm{xhfg}_{\mathrm{g}}$
$\mathrm{s}=\mathrm{sf}+\mathrm{xsfg}$
$\mathrm{v}=\mathrm{x} \mathrm{Vg}$
$\mathrm{Q}-\mathrm{w}=\sum \mathrm{mh}$
$F=\frac{2 \pi L \mu}{L_{n}\left(\frac{R_{2}}{R_{3}}\right)}$
$d s=\frac{d Q}{T}$
$S_{2}-S_{1}=C_{p L} \mathrm{~L}_{\mathrm{n}} \frac{T_{2}}{T_{1}}$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
$S_{g}=C_{p L} \quad \mathrm{~L}_{\mathrm{n}} \frac{T}{273}+\frac{h_{f g}}{T_{f}}$
$S=C_{p L} \mathrm{~L}_{\mathrm{n}} \frac{T_{f}}{273}+\frac{h f_{g}}{T_{f}}+C_{p u} \mathrm{~L}_{\mathrm{n}} \frac{T}{T_{f}}$
$S_{2}-S_{1}=M C_{p} L_{n} \frac{T_{2}}{T_{1}}-M R L_{n} \frac{P_{2}}{P_{1}}$
$F_{D}=\frac{1}{2} C D \rho \mathrm{u}^{2} S$
$F_{L}=\frac{1}{2} \mathrm{C}_{\mathrm{L}} \rho u^{2} s$
$S_{p}=\frac{d}{d s}(P+\rho g Z)$
$Q=\frac{\pi D^{4} \Delta p}{128 \mu L}$
$h_{f}=\frac{64}{R}\left(\frac{L}{D}\right)\left(\frac{\mathrm{v}^{2}}{2 g}\right)$
$h_{f}=\frac{4 f L v^{2}}{d 2 g}$
$f=\frac{16}{R e}$
$h_{m}=\frac{K \mathrm{v}^{2}}{2 g}$
$h_{m}=\frac{k\left(V_{1}-V_{2}\right)^{2}}{2 g}$
$\zeta=\left(1-\frac{T_{L}}{T_{H}}\right)$
$\left.S_{g e n}=\left(S_{2}-S_{1}\right)\right)+\frac{Q}{T}$
$W=\left(U_{1}-U_{2}\right)-T_{o}\left(S_{1}-S_{2}\right)-T_{0} S_{\text {gen }}$
$W_{u}=W-P_{o}\left(V_{2}-V_{1}\right)$
$W_{\text {rev }}=\left(U_{1}-U_{2}\right)-T_{0}\left(S_{1}-S_{2}\right)+P_{0}\left(V_{1}-V_{2}\right)$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
$\Phi=\left(U-U_{0}\right)-T\left(S-S_{0}\right)+\operatorname{Po}\left(V-V_{o}\right)$
$I=T o S_{g e n}$
$\mathrm{V}=\mathrm{r} \omega$
$\lambda=\mu \frac{V}{t}$
$F=\frac{2 \pi L \mu u}{L_{n}\left(\frac{R_{2}}{R_{1}}\right)}$
$T=\frac{\pi^{2} \mu N}{60 t}\left(R_{1}^{4}-R_{2}^{4}\right)$
$p=\frac{\rho g Q H}{1000}$

School of Engineering
BEng (Hons) Mechanical Engineering
Semester One Examination 2019/2020
Advanced Thermofluids and Control Systems
Module No. AME6015
DIMENSIONS FOR CERTAIN PHYSICAL QUANTITIES

Note: a is identified as the local sonic velocity, with dimensions L . T-1

