UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING SCIENCES

BEng (HONS) MECHANICAL, ELECTRICAL \& ELECTRONIC ENGINEERING

SEMESTER ONE EXAMINATIONS 2019/20

ENGINEERING MODELLING AND ANALYSIS

MODULE NO: AME5014

Date: Wednesday 15 ${ }^{\text {th }}$ January 2020
Time: 2:00pm - 4:00pm

INSTRUCTIONS TO CANDIDATES:
There are EIGHT questions.
Answer ANY FIVE questions only.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:
Formula Sheet (attached).

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Q1

The ordinary differential equation (ODE) describing the displacement $\mathrm{x}(t)$ in mm in function of time t of a voice box simulator can be modelled approximately by the equation below:

$$
\ddot{y}(t)-15 \dot{y}(t)+56 y(t)=24
$$

Given: $\ddot{y}(t), \dot{y}(t)$ and $y(t)$ all equal to 0 at $t=0$,
a) Use the method of Laplace transforms to derive an expression for $y(t)$
b) Sketch how $y(t)$ varies with time for the first 5 seconds.

Q2

It can be shown that a simple two degree of freedom electronic device in an electromagnetic field can be described by $\widehat{T}=K \vec{\varnothing}$ where: \widehat{T} and $\vec{\varnothing}$ are torque and rotation column vectors respectively and K is the stiffness matrix. Using,
$\vec{T}=\binom{60}{-25} \mathrm{Nm} \quad$ and $\quad K=\left[\begin{array}{cc}1700 & -600 \\ -600 & 1900\end{array}\right] \mathrm{Nmm} /$ degree

Calculate the displacement vector $\vec{\varnothing}$ in radian.

Q3

The output speed of a motor ω, in rad/s, is related to the step input angle Θ, in radian, of the sensor by the following transfer function:

$$
\frac{\omega(s)}{\theta(s)}=\frac{15}{4 s+2}
$$

a) Determine the $D C$ gain K and the time constant T of the system.
b) Calculate the speed indicated if the angle of the input sensor is 1.5 radians?
c) Determine the angle of the input sensor if the speed of the motor reaches 75% of its maximum value.

Total 20 marks

Q4

a) If $z=x \sin (y)$, , using the partial differentiation give the value of

$$
\frac{\partial^{2} z}{\partial y^{2}}+x y \cdot \frac{\partial^{2} z}{\partial x^{2}}
$$

If $x=\pi$ and $y=\pi / 4$
(10 marks)
b) Calculate the quantity of a crude oil extracted by a mechanical pump in three dimensions (xyz) that can be expressed by the volume V bounded above by the shape $z=x^{2} y^{2}$ and below by the rectangle $R=\{(x, y)$: $0 \leq x \leq 2,0 \leq y \leq 3\}$.

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Q5

The stress σ, in MPa, at a point in a body can be described by the following matrix A relative to the global co-ordinate system xyz.

$$
A=\left[\begin{array}{lll}
3 & 2 & 0 \\
4 & 1 & 0 \\
5 & 0 & 1
\end{array}\right] \mathrm{MPa}
$$

a) Using an appropriate technique, show that the principal Eigen values (principal stresses, Maximum Stresses) at this point are: $\lambda_{1}=5 \mathrm{MPa}, \lambda_{2}=1 \mathrm{MPa}$ and $\lambda_{3}=$ -1MPa.
(10 marks)
b) Determine also the associated Eigen vector and the cosine direction of the largest principal stress.
(10 marks)
Total 20 marks

Q6

Part of a valve regular operates at a frequency ω of $1.2 \mathrm{rad} / \mathrm{s}$. If the equation of motion is given by:

$$
\ddot{y}+2 \zeta \omega_{n} \dot{y}+\omega_{n}^{2} y=0
$$

Given: y in $m m, \quad \zeta=0.15, \omega_{n}=1.5 \frac{\mathrm{rad}}{\mathrm{s}}, y(0)=1 \mathrm{~mm}, \dot{y}(o)=0 \frac{\mathrm{~mm}}{\mathrm{~s}}$.
a) Find the expression of the motion of the valve in function of time. (14 marks)
b) Sketch how $\mathrm{y}(\mathrm{t})$ varies with time for the first 7 seconds.

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Q7

The pressure in a valve varies in relation to angular movement. The table and graph below show this variation. The work done \mathbf{W} by the system is calculated as follows:

$$
\boldsymbol{W}=\boldsymbol{\delta} \cdot \boldsymbol{A}
$$

$\boldsymbol{A}=\int_{\boldsymbol{\varphi} 1}^{\varphi 2} \boldsymbol{P d} \boldsymbol{\varphi}$, the integral under the curve where \boldsymbol{P} is the pressure in $\mathrm{KPa}, \boldsymbol{\varphi}$ is the angle in radians and $\boldsymbol{\delta}$ is the constant in mm^{3}. If $\boldsymbol{\delta}$ is $2 \times 10^{6} \mathrm{~mm}^{3}$, calculate:
a) the work done in one cycle.
b) Also, if it takes one minute for a cycle what is the power rating of the valve?
(6 Marks)

Angle(Deg)	Pressure(KPa)
0	0.0
20	0.4
40	9.9
60	48.9
80	109.1
100	136.4
120	97.9
140	34.7
160	3.2
180	0.0
200	4.0
220	54.4
240	195.7
260	354.6
280	381.9
300	244.8
320	79.3
340	6.8
360	0.0

Angle (Degrees)

Total (20 marks)
PLEASE TURN THE PAGE.....

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Q8

The following $R C$ circuit is shown in which $R=200 \Omega$ and $C=15 \mu F$.

The voltage $\mathrm{V}_{\mathrm{i}}=10$ Volts. The charge of the capacitor in the circuit is described by the following 1 st order differential equation:

$$
\frac{d V_{o}}{d t}=k\left(V_{i}-V_{o}\right)
$$

Given: the coefficient $\mathrm{k}=1 / \mathrm{RC}$ and $\mathrm{V}_{\mathrm{o}}(0)=0$.
a) Calculate the time required if the voltage at the generator is $\mathrm{V}_{0}=5$ volts.
b) Calculate the value of V_{o} after $\mathrm{t}=0.025 \mathrm{~s}$
c) Determine the time required for V_{0} to increase from 3 Volts to 8 volts.

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FORMULA SHEETS....

BEng (Hons) Mechanical, Electronic \& Electrical Engineering Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Formula sheet

Partial Fractions

$$
\begin{aligned}
& \frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)} \\
& \frac{F(x)}{(x+a)(x+b)^{2}}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^{2}} \\
& \frac{F(x)}{\left(x^{2}+a\right)}=\frac{A x+B}{\left(x^{2}+a\right)}
\end{aligned}
$$

Small Changes

$$
z=f(u, v, w)
$$

$$
\delta \boldsymbol{z} \simeq \frac{\partial z}{\partial u} \cdot \delta u+\frac{\partial z}{\partial v} \cdot \delta v+\frac{\partial z}{\partial w} \cdot \delta w
$$

Total Differential
$z=f(u, v, w)$
$d \boldsymbol{z}=\frac{\partial \boldsymbol{z}}{\partial u} d u+\frac{\partial \boldsymbol{z}}{\partial v} d v+\frac{\partial \boldsymbol{z}}{\partial w} d w$

Rate of Change

$$
z=f(u, v, w)
$$

$\frac{d \boldsymbol{z}}{d t}=\frac{\partial \boldsymbol{z}}{\partial u} \cdot \frac{d u}{d t}+\frac{\partial \boldsymbol{z}}{\partial v} \cdot \frac{d v}{d t}+\frac{\partial \boldsymbol{z}}{\partial w} \cdot \frac{d w}{d t}$
Eigenvalues
$|A-\lambda I|=0$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Eigenvectors

$$
\left(A-\lambda_{r} \mathrm{I}\right) x_{r}=0
$$

Integration

$$
\int u \cdot \frac{d v}{d x} d x=u v-\int v \cdot \frac{d u}{d x} d x
$$

Simpson's rule
To calculate the area under the curve which is the integral of the function Simpson's Rule is used as shown in the figure below:

The area into n equal segments of width Δx. Note that in Simpson's Rule, n must be EVEN. The approximate area is given by the following rule:

$$
\text { Area }=\int_{a}^{b} f(x) d x=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 \mathrm{y}_{4} \ldots+4 \mathrm{y}_{n-1}+\mathrm{y}_{n}\right)
$$

Where $\Delta x=\frac{b-a}{n}$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Differential equation

Homogeneous form:

$$
a \ddot{y}+b \dot{y}+c y=0
$$

Characteristic equation:

$$
a \lambda^{2}+b \lambda+c=0
$$

Quadratic solutions :

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

i. If $b^{2}-4 a c>0, \lambda_{1}$ and λ_{2} are distinct real numbers then the general solution of the differential equation is:

$$
y(t)=A e^{\lambda_{1} t}+B e^{\lambda_{2} t}
$$

A and B are constants.
ii. If $b^{2}-4 a c=0, \lambda_{1}=\lambda_{2}=\lambda$ then the general solution of the differential equation is:

$$
y(t)=e^{\lambda t}(A+B x)
$$

A and B are constants.
iii. If $b^{2}-4 a c<0, \lambda_{1}$ and λ_{2} are complex numbers then the general solution of the differential equation is:

$$
\begin{gathered}
y(t)=e^{\alpha t}[A \cos (\beta t)+B \sin (\beta t)] \\
\alpha=\frac{-b}{2 a} \text { and } \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

A and B are constants.

Inverse of 2×2 matrices:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The inverse of A can be found using the formula:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014
modelling growth and decay of engineering problem
$C(t)=C_{0} e^{k t}$
$k>0$ gives exponential growth
$k<0$ gives exponential decay

First order system

$$
y(t)=k\left(1-e^{-\frac{t}{\tau}}\right)
$$

Transfer function:

$$
k
$$

$\tau s+1$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Derivatives table:

$y=f(x)$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)$
k, any constant	0
x	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
x^{n}, any constant n	$n x^{n-1}$
e^{x}	e^{x}
$\mathrm{e}^{k x}$	$k \mathrm{e}^{k x}$
$\ln x=\log _{\mathrm{e}} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\sin k x$	$k \cos k x$
$\cos x$	$-\sin x$
$\cos k x$	$-k \sin k x$
$\tan x=\frac{\sin x}{\cos x}$	$\sec { }^{2} x$
$\tan k x$	$k \sec ^{2} k x$
$\operatorname{cosec} x=\frac{1}{\sin x}$	$-\operatorname{cosec} x \cot x$
$\sec x=\frac{1}{\cos x}$	$\sec x \tan x$
$\cot x=\frac{\cos x}{\sin x}$	$-\operatorname{cosec}^{2} x$
$\sin { }^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos { }^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}}$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Integral table:

$f(x)$	$\int f(x) \mathrm{d} x$
k, any constant	$k x+c$
x	$\frac{x^{2}}{2}+c$
x^{2}	$\frac{x^{3}}{3}+c$
x^{n}	$\frac{x^{n+1}}{n+1}+c$
$x^{-1}=\frac{1}{x}$	$\ln \|x\|+c$
e^{x}	$\mathrm{e}^{x}+c$
$\mathrm{e}^{k x}$	$\frac{1}{k} \mathrm{e}^{k x}+c$
$\cos x$	$\sin x+c$
$\cos k x$	$\frac{1}{k} \sin k x+c$
$\sin x$	$-\cos x+c$
$\sin k x$	$-\frac{1}{k} \cos k x+c$
$\tan x$	$\ln (\sec x)+c$
$\sec x$	$\ln (\sec x+\tan x)+c$
$\operatorname{cosec} x$	$\ln (\operatorname{cosec} x-\cot x)+$
$\cot x$	$\ln (\sin x)+c$
$\cosh x$	$\sinh x+c$
$\sinh x$	$\cosh x+c$
$\tanh x$	$\ln \cosh x+c$
$\operatorname{coth} x$	$\ln \sinh x+c$
$\frac{1}{x^{2}+a^{2}}$	$\frac{1}{a} \tan \frac{x}{a}+c$

BEng (Hons) Mechanical, Electronic \& Electrical Engineering
Semester 1 Examination 2019/2020
Engineering Modelling and Analysis
Module No. AME5014

Laplace table:

$f(t)$	$F(s)$	$f(t)$	$F(s)$	
1	$\frac{1}{s}$	$u_{c}(t)$	$\frac{e^{-c s}}{s}$	
t	$\frac{1}{s^{2}}$	$\delta(t)$	1	
t^{n}	$\frac{n!}{s^{n+1}}$		$\delta(t-c)$	$e^{-c s}$
$e^{a t}$	$\frac{1}{s-a}$	$f^{\prime}(t)$	$s F(s)-f(0)$	
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$	$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$	
$\cos b t$	$\frac{s}{s^{2}+b^{2}}$	$(-t)^{n} f(t)$	$F^{(n)}(s)$	
$\sin b t$	$\frac{b}{s^{2}+b^{2}}$	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$	
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$e^{c t} f(t)$	$F(s-c)$	
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$	$\delta(t-c) f(t)$	$e^{-c s} f(c)$	

END OF FORMULA SHEETS

END OF PAPER

