[ESS10]

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING SCIENCES

BEng (HONS) MECHANICAL, ELECTRICAL & ELECTRONIC ENGINEERING

SEMESTER ONE EXAMINATIONS 2019/20

ENGINEERING MODELLING AND ANALYSIS

MODULE NO: AME5014

Date: Wednesday 15th January 2020

Time: 2:00pm – 4:00pm

INSTRUCTIONS TO CANDIDATES:

There are **<u>EIGHT</u>** questions.

Answer ANY FIVE questions only.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:

Formula Sheet (attached).

Page 2 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Q1

The ordinary differential equation (ODE) describing the displacement x(t) in mm in function of time t of a voice box simulator can be modelled approximately by the equation below:

 $\ddot{y}(t) - 15 \, \dot{y}(t) + 56 \, y(t) = 24$

Given: $\ddot{y}(t)$, $\dot{y}(t)$ and y(t) all equal to 0 at t = 0,

a) Use the method of Laplace transforms to derive an expression for y(t)

(14 marks)

b) Sketch how y(t) varies with time for the first 5 seconds.

(6 marks)

Total 20 marks

Q2

It can be shown that a simple two degree of freedom electronic device in an electromagnetic field can be described by $\hat{T} = K\vec{\phi}$ where: \hat{T} and $\vec{\phi}$ are torque and rotation column vectors respectively and K is the stiffness matrix. Using,

$$\vec{T} = \begin{pmatrix} 60\\ -25 \end{pmatrix}$$
 Nm and $K = \begin{bmatrix} 1700 & -600\\ -600 & 1900 \end{bmatrix}$ Nmm / degree

Calculate the displacement vector $\vec{\phi}$ in radian.

Total 20 marks

Page 3 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Q3

The output speed of a motor ω , in rad/s, is related to the step input angle Θ , in radian, of the sensor by the following transfer function:

$$\frac{\omega(s)}{\theta(s)} = \frac{15}{4s+2}$$

- a) Determine the DC gain K and the time constant T of the system.
- (6 marks)
- b) Calculate the speed indicated if the angle of the input sensor is 1.5 radians? (7 marks)
- c) Determine the angle of the input sensor if the speed of the motor reaches 75% of its maximum value.

(7 marks)

Total 20 marks

Q4

a) If $z = x \sin(y)$, , using the partial differentiation give the value of

$$\frac{\partial^2 z}{\partial y^2} + xy \cdot \frac{\partial^2 z}{\partial x^2}$$

If $x = \pi$ and $y = \pi/4$

(10 marks)

b) Calculate the quantity of a crude oil extracted by a mechanical pump in three dimensions (xyz) that can be expressed by the volume V bounded above by the shape $z=x^2y^2$ and below by the rectangle R = {(x, y): $0 \le x \le 2, 0 \le y \le 3$ }.

(10 marks)

Total 20 marks

Page 4 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Q5

The stress σ , in MPa, at a point in a body can be described by the following matrix A relative to the global co-ordinate system xyz.

$$A = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix} \mathsf{MPa}$$

- a) Using an appropriate technique, show that the principal Eigen values (principal stresses, Maximum Stresses) at this point are: $\lambda_1 = 5$ MPa, $\lambda_2 = 1$ MPa and $\lambda_3 = -1$ MPa.
- b) Determine also the associated Eigen vector and the cosine direction of the largest principal stress.

(10 marks)

(10 marks)

Total 20 marks

Q6

Part of a valve regular operates at a frequency ω of 1.2 rad/s. If the equation of motion is given by:

$$\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = 0$$

Given: y in mm, $\zeta = 0.15$, $\omega_n = 1.5 \frac{rad}{s}$, y(0) = 1mm, $\dot{y}(o) = 0 \frac{mm}{s}$.

- a) Find the expression of the motion of the valve in function of time. (14 marks)
- b) Sketch how y(t) varies with time for the first 7 seconds. (6 marks)

Total 20 marks

Page 5 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Q7

The pressure in a valve varies in relation to angular movement. The table and graph below show this variation. The work done W by the system is calculated as follows:

$$W = \delta \cdot A$$

 $A = \int_{\varphi 1}^{\varphi 2} P \, d\varphi$, the integral under the curve where *P* is the pressure in KPa, φ is the angle in radians and δ is the constant in mm³. If δ is 2 x10⁶ mm³, calculate:

a) the work done in one cycle.

(14 Marks)

(6 Marks)

b) Also, if it takes one minute for a cycle what is the power rating of the valve?

Angle(Deg) Pressure(KPa) 450.0 0 0.0 400.0 20 0.4 40 350.0 9.9 60 48.9 300.0 80 109.1 250.0 100 P(KPa) 136.4 200.0 120 97.9 140 150.0 34.7 160 3.2 100.0 180 0.0 50.0 200 4.0 0.0 220 54.4 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 240 195.7 260 354.6 280 Angle (Degrees) 381.9 300 244.8 320 79.3 340 6.8 360 0.0

Total (20 marks)

Page 6 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Q8

The following RC circuit is shown in which R= 200Ω and C= 15μ F.

The voltage V_i =10 Volts. The charge of the capacitor in the circuit is described by the following 1st order differential equation:

$$\frac{dV_o}{dt} = k(V_i - V_o)$$

Given: the coefficient k=1/RC and $V_{\circ}(0)=0$.

a) Calculate the time required if the voltage at the generator is V_0 =5 volts.

b) Calculate the value of Vo after t=0.025s

(4 Marks)

(7 marks)

c) Determine the time required for V_0 to increase from 3 Volts to 8 volts.

(9 marks)

Total 20 marks

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FORMULA SHEETS....

Page 7 of 13

BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Formula sheet

Partial Fractions

$$\frac{F(x)}{(x+a)(x+b)} = \frac{A}{(x+a)} + \frac{B}{(x+b)}$$
$$\frac{F(x)}{(x+a)(x+b)^2} = \frac{A}{(x+a)} + \frac{B}{(x+b)} + \frac{C}{(x+b)^2}$$

 $\frac{F(x)}{(x^2+a)} = \frac{Ax+B}{(x^2+a)}$

Small Changes

$$z = f(u, v, w)$$

$$\delta z \simeq \frac{\partial z}{\partial u} \cdot \delta u + \frac{\partial z}{\partial v} \cdot \delta v + \frac{\partial z}{\partial w} \cdot \delta w$$

Total Differential

$$z = f(u, v, w)$$

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv + \frac{\partial z}{\partial w} dw$$

Rate of Change

$$z = f(u, v, w)$$

 $\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} + \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$

Eigenvalues

 $|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$

Page 8 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Eigenvectors

$$(\mathbf{A} - \lambda_r \mathbf{I})\mathbf{x}_r = \mathbf{0}$$

Integration

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

<u>Simpson's rule</u> To calculate the area under the curve which is the integral of the function Simpson's Rule is used as shown in the figure below:

The area into *n* equal segments of width Δx . Note that in Simpson's Rule, *n* must be EVEN. The approximate area is given by the following rule:

$$Area = \int_{a}^{b} f(x)dx = \frac{\Delta x}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 \dots + 4y_{n-1} + y_n)$$

Where $\Delta x = \frac{b-a}{n}$

Page 9 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Differential equation

Homogeneous form:

Characteristic equation:

$$a\ddot{y} + b\dot{y} + cy = 0$$

$$a\lambda^2 + b\lambda + c = 0$$

Quadratic solutions :

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

i. If $b^2 - 4ac > 0$, λ_1 and λ_2 are distinct real numbers then the general solution of the differential equation is:

$$y(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$$

A and B are constants.

ii. If $b^2 - 4ac = 0$, $\lambda_1 = \lambda_2 = \lambda$ then the general solution of the differential equation is:

$$y(t) = e^{\lambda t} (A + Bx)$$

A and B are constants.

iii. If $b^2 - 4ac < 0$, λ_1 and λ_2 are complex numbers then the general solution of the differential equation is:

$$y(t) = e^{\alpha t} [A\cos(\beta t) + B\sin(\beta t)]$$

$$\alpha = \frac{-b}{2a}$$
 and $\beta = \frac{\sqrt{4ac - b^2}}{2a}$

A and B are constants.

Inverse of 2x2 matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The inverse of A can be found using the formula:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Page 10 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

modelling growth and decay of engineering problem

SEL AS

$$C(t) = C_0 e^{kt}$$

k > 0 gives exponential growth

k < 0 gives exponential decay

First order system

 $y(t) = k(1 - e^{-\frac{t}{\tau}})$ $\frac{k}{\tau s + 1}$

Transfer function:

Page 11 of 13

BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Derivatives table:

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^{2}$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	$k e^{kx}$
$\ln x = \log_{\rm e} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$
$\tan x = \frac{\sin x}{\cos x}$	$\sec^2 x$
$\tan kx$	$k \sec^2 kx$
$\operatorname{cosec} x = \frac{1}{\sin x}$	$-\operatorname{cosec} x \operatorname{cot} x$
$\sec x = \frac{1}{\cos x}$	$\sec x \tan x$
$\cot x = \frac{\cos x}{\sin x}$	$-\mathrm{cosec}^2 x$
$\sin^{-1}x$	$\frac{1}{\sqrt{1-r^2}}$
$\cos^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$ $\frac{-1}{\sqrt{1-x^2}}$
225	

Page 12 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Integral table:

f(x)	$\int f(x) \mathrm{d}x$
k, any constant	kx + c
x	$\frac{\frac{x^2}{2} + c}{\frac{x^3}{3} + c}$ $\frac{\frac{x^{n+1}}{n+1} + c}{\frac{x^{n+1}}{n+1} + c}$
x^2	$\frac{x^3}{2} + c$
x^n	$\frac{x^{n+1}}{x^{n+1}} + c$
$x^{-1} = \frac{1}{x}$	$\frac{n+1}{\ln x +c}$
e^x	$e^x + c$
e^{kx}	$\frac{1}{k}e^{kx} + c$
$\cos x$	$\sin x + c$
$\cos kx$	$\frac{1}{k}\sin kx + c$
$\sin x$	$-\cos x + c$
$\sin kx$	$-\frac{1}{k}\cos kx + c$
$\tan x$	$\ln(\sec x) + c$
$\sec x$	$\ln(\sec x + \tan x) + \epsilon$
$\operatorname{cosec} x$	$\ln(\operatorname{cosec} x - \cot x) +$
$\cot x$	$\ln(\sin x) + c$
$\cosh x$	$\sinh x + c$
$\sinh x$	$\cosh x + c$
$\tanh x$	$\ln\cosh x + c$
$\coth x$	$\ln \sinh x + c$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\tan^{-1}\frac{x}{a} + c$

Page 13 of 13 BEng (Hons) Mechanical, Electronic & Electrical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

Laplace table:

			,
f(t)	F(s)	f(t)	F(s)
1	$\frac{1}{s}$	$u_c(t)$	$\frac{e^{-cs}}{s}$
t	$\frac{1}{s^2}$	$\delta(t)$	1
t"	$\frac{n!}{s^{n+1}}$	$\delta(t-c)$	e ^{-cs}
e ^{at}	$\frac{1}{s-a}$	f'(t)	sF(s)-f(0)
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$	f''(t)	$s^2 F(s) - sf(0) - f'(0)$
cos bt	$\frac{s}{s^2 + b^2}$	$(-t)^n f(t)$	$F^{(n)}(s)$
sin bt	$\frac{b}{s^2 + b^2}$	$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$e^{at}\cos bt$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	$e^{ct}f(t)$	F(s-c)
$e^{at} \sin bt$	$\frac{b}{\left(s-a\right)^2+b^2}$	$\delta(t-c)f(t)$	$e^{-cs}f(c)$

END OF FORMULA SHEETS

END OF PAPER