# **UNIVERSITY OF BOLTON**

# WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) MECHANICAL ENGINEERING SEMESTER ONE EXAMINATION 2019/2020 ENGINEERING MODELLING AND ANALYSIS MODULE NO: AME5014

Date: Tuesday 14<sup>th</sup> January 2020

Time: 1:00 PM - 3:00 PM

**INSTRUCTIONS TO CANDIDATES:** 

**CANDIDATES REQUIRE:** 

There are FIVE questions on this paper

Answer ANY FOUR questions only

All questions carry equal marks

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

# Question 1.

A large marquee is to be made in the form of a rectangular box-like shape with canvas covering on the top, back and sides. If the volume of the marquee is to be made 250 m<sup>3</sup>, determine the following

- a) Sketch the open rectangular box with proper dimensions.
- b) the dimensions of the open rectangular box
- c) Show that the total surface area is minimum.
- d) the minimum surface area of the canvas

(5 marks)

(7 marks)

(3 marks)

(10 marks)

#### Total 25 marks

#### Question 2.

The stress  $\sigma$ , in MPa, at a point in a body can be described by the stress tensor matrix A relative to the global co-ordinate system xyz.

|    | (1) | 1 | 2 |
|----|-----|---|---|
| A= | 0   | 2 | 2 |
|    | (-1 | 1 | 3 |

a) Using an appropriate technique, show that the principal Eigen values (principal stresses, Maximum Stresses) at this point are:  $\lambda_1 = 3$  MPa,  $\lambda_2 = 2$ MPa and  $\lambda_3 = 1$  MPa

(10 marks)

b) Determine also the associated Eigen vector for the largest principal stress.

(15 marks)

#### Total 25 marks

#### Question 3.

a)The energy used to cool down the temperature of an electronic device can be determined from the following integral, the values associated with time and current is shown in the Figure Q3 below.

$$E = V * \int_{t1}^{t2} I dt$$

Where *I* is the current, in Ampere, *t* is the time, in mins, *V* is 220 volts, Energy E, volt\*Ampere\*hours

The monitored data is given below in Fig Q3. For this data determine:

(i) An estimate of the energy used in VAh (volt\*Ampere\*hours).

(8 marks)

(ii) Estimate the time and the current at peak power consumption.

(2 marks)



Figure Q3 Current used over time period

#### **Question 3 continued over the page**

#### **Question 3 continued...**

b) The attitude of employees towards the new company policy is tabulated below.
 The employees are grouped according to their job descriptions: Mechanical engineer, Programmer or System engineer.

| Attitude    | Mechanical | Programmer | System   |
|-------------|------------|------------|----------|
|             | engineer   |            | Engineer |
| Like        | 46         | 168        | 196      |
| Indifferent | 100        | 572        | 1148     |
| Dislike     | 32         | 248        | 1076     |

Use a Chi-squared test (  $\chi^2$  ) to check the hypothesis that there are variations in attitude depending on job description.

Test at 5% level.

(15 marks)

#### Total 25 marks

#### Question 4.

The ordinary differential equation (ODE) describing the displacement y(t) in mm at time t, sec of a voice box simulator can be modelled approximately by the equation below::

$$2\frac{d^2y(t)}{dt^2} + 5\frac{dy}{dt} - 3y = 0$$

Given that when t = 0, y = 4 and dy/dx = 9

(i) Use Laplace transforms to derive an expression for y(t)

(20 marks)

(ii) Sketch how y(t) varies with time for the first 5 seconds

(5 marks)

Total 25 marks

#### Please turn the page

# Question 5.

a) The resonant frequency f in a series electrical circuit is given by: f=

 $\frac{1}{2\pi\sqrt{LC}}$ 

Where C, capacitance, L, Inductance Show that  $\frac{\partial f}{\partial L} = \frac{-1}{4\pi\sqrt{CL^3}}$ 

(12 marks)

b) The rate of flow of gas in a pipe is given by: V= $\frac{C\sqrt{d}}{\sqrt[6]{T^5}}$ , where **C** is a constant,

d is the diameter of the pipe and **T** is the thermodynamic temperature of the gas. When determining the rate of flow experimentally, **d** is measured and subsequently found to be in error by +1.4% and **T** has an error of -1.8%. Determine the percentage error in the rate of flow based on the measured values of **d** and **T**.

(13 marks)

Total 25 marks

# **END OF QUESTIONS**

Please turn the page for the Formula Sheet

#### FORMULA SHEET

# Laplace transforms

| (i)    | 1                              | $\frac{1}{s}$                     |      |
|--------|--------------------------------|-----------------------------------|------|
| (ii)   | k                              | $\frac{k}{s}$                     |      |
| (iii)  | e <sup>at</sup>                | $\frac{1}{s-a}$                   | , C) |
| (iv)   | sin at                         | $\frac{a}{s^2 + a^2}$             | 23   |
| (v)    | cos <i>at</i>                  | $\frac{s}{s^2 + a^2}$             |      |
| (vi)   | t                              | $\frac{1}{s^2}$                   |      |
| (vii)  | <i>t</i> <sup>2</sup>          | $\frac{2!}{s^3}$                  |      |
| (viii) | $t^n \ (n=1,2,3,\ldots)$       | $\frac{n!}{s^{n+1}}$              |      |
| (ix)   | cosh at                        | $\frac{s}{s^2 - a^2}$             |      |
| (x)    | sinh at                        | $\frac{a}{s^2 - a^2}$             |      |
| (i)    | e <sup>at</sup> t <sup>n</sup> | $\frac{n!}{(s-a)^{n+1}}$          |      |
| (ii)   | $e^{at} \sin \omega t$         | $\frac{\omega}{(s-a)^2+\omega^2}$ |      |
| (iii)  | $e^{at}\cos\omega t$           | $\frac{s-a}{(s-a)^2+\omega^2}$    |      |
| (iv)   | $e^{at} \sinh \omega t$        | $\frac{\omega}{(s-a)^2-\omega^2}$ |      |
| (v)    | $e^{at} \cosh \omega t$        | $\frac{s-a}{(s-a)^2-\omega^2}$    |      |

# Formula Sheet continued over the page

#### Formula Sheet continued...

| Inverse laplace. |                                     |                                |    |  |  |  |
|------------------|-------------------------------------|--------------------------------|----|--|--|--|
| (i)              | $\frac{1}{s}$                       | 1                              |    |  |  |  |
| (11)             | $\frac{k}{s}$                       | k                              |    |  |  |  |
| (111)            | $\frac{1}{s-a}$                     | e <sup>at</sup>                | e) |  |  |  |
| (iv)             | $\frac{a}{s^2 + a^2}$               | sinat                          | 2  |  |  |  |
| (v)              | $\frac{s}{s^2 + a^2}$               | cos at                         |    |  |  |  |
| (vi)             | $\frac{1}{s^2}$                     | t                              |    |  |  |  |
| (vii)            | $\frac{2!}{s^3}$                    | $t^2$                          |    |  |  |  |
| (viii)           | $\frac{n!}{s^{n+1}}$                | t <sup>n</sup>                 |    |  |  |  |
| (ix)             | $\frac{a}{s^2 - a^2}$               | sinh at                        |    |  |  |  |
| (x)              | $\frac{s}{s^2 - a^2}$               | cosh at                        |    |  |  |  |
| (xi)             | $\frac{n!}{(s-a)^{n+1}}$            | e <sup>at</sup> t <sup>n</sup> |    |  |  |  |
| (xii)            | $\frac{\omega}{(s-a)^2 + \omega^2}$ | $e^{at}\sin\omega t$           |    |  |  |  |
| (xiii)           | $\frac{s-a}{(s-a)^2+\omega^2}$      | $e^{at}\cos\omega t$           |    |  |  |  |
| (xiv)            | $\frac{\omega}{(s-a)^2 - \omega^2}$ | $e^{at} \sinh \omega t$        |    |  |  |  |
| (xv)             | $\frac{s-a}{(s-a)^2-\omega^2}$      | $e^{at} \cosh \omega t$        |    |  |  |  |

#### Formula Sheet continued over the page

## Formula Sheet continued...

#### <u>Maxima /Minima</u>

Stationary Points

$$\frac{\partial Z}{\partial x} = 0, \quad \frac{\partial Z}{\partial y} = 0$$

$$\Delta = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 z}{\partial x^2}\right) \left(\frac{\partial^2 z}{\partial y^2}\right)$$

## Statistics

Chi-square distribution

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

# **Partial Fractions**

$$\frac{F(x)}{(x+a)(x+b)} = \frac{A}{(x+a)} + \frac{B}{(x+b)}$$
$$\frac{F(x)}{(x+a)(x+b)^2} = \frac{A}{(x+a)} + \frac{B}{(x+b)} + \frac{C}{(x+b)^2}$$
$$\frac{F(x)}{(x^2+a)} = \frac{Ax+B}{(x^2+a)}$$

# **Eigenvalues**

 $|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$ 

# **Eigenvectors**

 $(\mathbf{A} - \lambda_r \mathbf{I})\mathbf{x}_r = \mathbf{0}$ 

# Formula Sheet continued over the page

#### Formula Sheet continued...

#### Total differential, rates of change and small changes

$$\mathrm{d}z = \frac{\partial z}{\partial u} \mathrm{d}u + \frac{\partial z}{\partial v} \mathrm{d}v + \frac{\partial z}{\partial w} \mathrm{d}w + \cdots$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\partial z}{\partial v}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{\partial z}{\partial w}\frac{\mathrm{d}w}{\mathrm{d}t} + \cdots$$

$$\delta z \approx \frac{\partial z}{\partial u} \delta u + \frac{\partial z}{\partial v} \delta v + \frac{\partial z}{\partial w} \delta w + \cdots$$

- $L{x} = \bar{x}$
- $\mathsf{L}\{\dot{x}\} \stackrel{\cdot}{=} s\bar{x} x_0$

$$L\{\ddot{x}\} = s^2 \overline{x} - \mathbf{s} x_0 - x_1$$

#### **Fourier Series**

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$f(x) = a_{0} + \sum_{n=1}^{\infty} (a_{n} \cos nx + b_{n} \sin nx)$$

#### Page 10 of 11

University of Bolton Western International College FZE BEng (Hons) Mechanical Engineering Semester 1 Examination 2019/2020 Engineering Modelling and Analysis Module No. AME5014

# Formula Sheet continued over the page

#### Formula Sheet continued...

Chi-Square Distribution Table



The shaded area is equal to  $\alpha$  for  $\chi^2 = \chi^2_{\alpha}$ .

| $d\!f$ | $\chi^2_{.995}$ | $\chi^2_{.990}$ | $\chi^2_{.975}$ | $\chi^2_{.950}$ | $\chi^2_{.900}$ | $\chi^2_{.100}$ | $\chi^2_{.050}$ | $\chi^2_{.025}$ | $\chi^2_{.010}$ | $\chi^2_{.005}$ |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1      | 0.000           | 0.000           | 0.001           | 0.004           | 0.016           | 2.706           | 3.841           | 5.024           | 6.635           | 7.879           |
| 2      | 0.010           | 0.020           | 0.051           | 0.103           | 0.211           | 4.605           | 5.991           | 7.378           | 9.210           | 10.597          |
| 3      | 0.072           | 0.115           | 0.216           | 0.352           | 0.584           | 6.251           | 7.815           | 9.348           | 11.345          | 12.838          |
| 4      | 0.207           | 0.297           | 0.484           | 0.711           | 1.064           | 7.779           | 9.488           | 11.143          | 13.277          | 14.860          |
| 5      | 0.412           | 0.554           | 0.831           | 1.145           | 1.610           | 9.236           | 11.070          | 12.833          | 15.086          | 16.750          |
| 6      | 0.676           | 0.872           | 1.237           | 1.635           | 2.204           | 10.645          | 12.592          | 14.449          | 16.812          | 18.548          |
| 7      | 0.989           | 1.239           | 1.690           | 2.167           | 2.833           | 12.017          | 14.067          | 16.013          | 18.475          | 20.278          |
| 8      | 1.344           | 1.646           | 2.180           | 2.733           | 3.490           | 13.362          | 15.507          | 17.535          | 20.090          | 21.955          |
| 9      | 1.735           | 2.088           | 2.700           | 3.325           | 4.168           | 14.684          | 16.919          | 19.023          | 21.666          | 23.589          |
| 10     | 2.156           | 2.558           | 3.247           | 3.940           | 4.865           | 15.987          | 18.307          | 20.483          | 23.209          | 25.188          |
| 11     | 2.603           | 3.053           | 3.816           | 4.575           | 5.578           | 17.275          | 19.675          | 21.920          | 24.725          | 26.757          |
| 12     | 3.074           | 3.571           | 4.404           | 5.226           | 6.304           | 18.549          | 21.026          | 23.337          | 26.217          | 28.300          |
| 13     | 3.565           | 4.107           | 5.009           | 5.892           | 7.042           | 19.812          | 22.362          | 24.736          | 27.688          | 29.819          |
| 14     | 4.075           | 4.660           | 5.629           | 6.571           | 7.790           | 21.064          | 23.685          | 26.119          | 29.141          | 31.319          |
| 15     | 4.601           | 5.229           | 6.262           | 7.261           | 8.547           | 22.307          | 24.996          | 27.488          | 30.578          | 32.801          |
| 16     | 5.142           | 5.812           | 6.908           | 7.962           | 9.312           | 23.542          | 26.296          | 28.845          | 32.000          | 34.267          |
| 17     | 5.697           | 6.408           | 7.564           | 8.672           | 10.085          | 24.769          | 27.587          | 30.191          | 33.409          | 35.718          |
| 18     | 6.265           | 7.015           | 8.231           | 9.390           | 10.865          | 25.989          | 28.869          | 31.526          | 34.805          | 37.156          |
| 19     | 6.844           | 7.633           | 8.907           | 10.117          | 11.651          | 27.204          | 30.144          | 32.852          | 36.191          | 38.582          |
| 20     | 7.434           | 8.260           | 9.591           | 10.851          | 12.443          | 28.412          | 31.410          | 34.170          | 37.566          | 39.997          |
| 21     | 8.034           | 8.897           | 10.283          | 11.591          | 13.240          | 29.615          | 32.671          | 35.479          | 38.932          | 41.401          |
| 22     | 8.643           | 9.542           | 10.982          | 12.338          | 14.041          | 30.813          | 33.924          | 36.781          | 40.289          | 42.796          |
| 23     | 9.260           | 10.196          | 11.689          | 13.091          | 14.848          | 32.007          | 35.172          | 38.076          | 41.638          | 44.181          |
| 24     | 9.886           | 10.856          | 12.401          | 13.848          | 15.659          | 33.196          | 36.415          | 39.364          | 42.980          | 45.559          |
| 25     | 10.520          | 11.524          | 13.120          | 14.611          | 16.473          | 34.382          | 37.652          | 40.646          | 44.314          | 46.928          |
| 26     | 11.160          | 12.198          | 13.844          | 15.379          | 17.292          | 35.563          | 38.885          | 41.923          | 45.642          | 48.290          |
| 27     | 11.808          | 12.879          | 14.573          | 16.151          | 18.114          | 36.741          | 40.113          | 43.195          | 46.963          | 49.645          |
| 28     | 12.461          | 13.565          | 15.308          | 16.928          | 18.939          | 37.916          | 41.337          | 44.461          | 48.278          | 50.993          |
| 29     | 13.121          | 14.256          | 16.047          | 17.708          | 19.768          | 39.087          | 42.557          | 45.722          | 49.588          | 52.336          |
| 30     | 13.787          | 14.953          | 16.791          | 18.493          | 20.599          | 40.256          | 43.773          | 46.979          | 50.892          | 53.672          |
| 40     | 20.707          | 22.164          | 24.433          | 26.509          | 29.051          | 51.805          | 55.758          | 59.342          | 63.691          | 66.766          |
| 50     | 27.991          | 29.707          | 32.357          | 34.764          | 37.689          | 63.167          | 67.505          | 71.420          | 76.154          | 79.490          |
| 60     | 35.534          | 37.485          | 40.482          | 43.188          | 46.459          | 74.397          | 79.082          | 83.298          | 88.379          | 91.952          |
| 70     | 43.275          | 45.442          | 48.758          | 51.739          | 55.329          | 85.527          | 90.531          | 95.023          | 100.425         | 104.215         |
| 80     | 51.172          | 53.540          | 57.153          | 60.391          | 64.278          | 96.578          | 101.879         | 106.629         | 112.329         | 116.321         |
| 90     | 59.196          | 61.754          | 65.647          | 69.126          | 73.291          | 107.565         | 113.145         | 118.136         | 124.116         | 128.299         |
| 100    | 67.328          | 70.065          | 74.222          | 77.929          | 82.358          | 118.498         | 124.342         | 129.561         | 135.807         | 140.169         |

#### **END OF PAPER**

Past-kanination Paper