UNIVERSITY OF BOLTON MALAYSIA - KTG

B.ENG. (HONS) MECHANICAL ENGINEERING

SEMESTER 1 EXAMINATION 2019/2020

THERMOFLUIDS AND CONTROL SYSTEMS

MODULE NO: AME5003

Date: Thursday 16th January 2020 Time: 2 Hours

INSTRUCTIONS TO CANDIDATES:

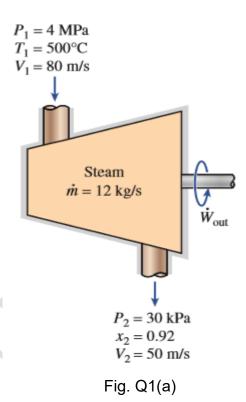
There are FIVE questions.

Answer ALL questions in SECTION A and only TWO (2) questions in SECTION B.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.


All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Pressure tables are included in the Appendix at the end of the paper.

SECTION A [Answer ALL questions in this section]

Q1. a) Steam flows steadily through an adiabatic turbine shown in Fig. Q1(a). The inlet conditions of the steam are 4 MPa, 500°C, and 80 m/s, and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Steam tables are attached in Appendix 1 for reference. Determine

(1) the change in kinetic energy,
(2) the power output, and
(3) the turbine inlet area.
(5 marks)
(5 marks)
(5 marks)

- b) A hollow spherical iron container shown in Fig. Q1(b) whose outer diameter is 40 cm and thickness is 0.4 cm is filled with iced water at 0°C. If the outer surface temperature is 3°C, thermal conductivity of iron, K, is 80.2 W/m.°C. The heat of fusion of water is 333.7 KJ/Kg at 1 atm. Calculate: -
 - (1) The approximate rate of heat loss from the sphere (5 marks)
 - (2) The rate at which ice melts in the container. (5 marks)

Question 1b continued over the page Please turn the page

Question 1b cont'd...

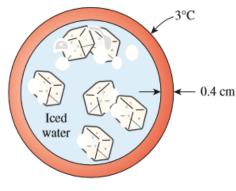


Fig. Q1(b)

Total 25 marks

- Q2 a) Underground water shown in Fig.Q2(a) is to be pumped by a 78 percent efficient 5-kW submerged pump to a pool whose free surface is 30 m above the underground water level. The diameter of the pipe is 7 cm on the intake side and 5 cm on the discharge side. Determine
 - (1) the maximum flow rate of water and (10 marks)
 - (2) the pressure difference across the pump. Assume the elevation difference between the pump inlet and the outlet and the effect of the kinetic energy correction factors to be negligible.

(10 marks)

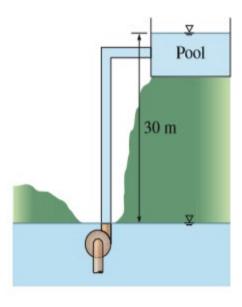
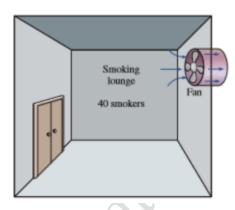


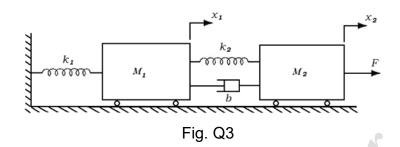
Fig. Q2(a)

Question 2 continued over the page. Please turn the page

Question 2 cont'd...

b) A smoking lounge shown in Fig. Q2(b) is to accommodate 40 heavy smokers. The minimum fresh air requirement for smoking lounges is specified to be 30 L/s per person (ASHRAE, Standard 62, 1989). Determine the minimum required flow rate of fresh air that needs to be supplied to the lounge, and the minimum diameter of the duct if the air velocity is not to exceed 8 m/s.



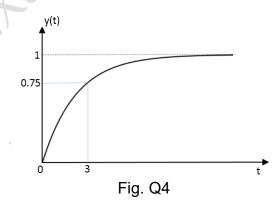

Fig. Q2(b)

(5 marks)

Total 25 marks

SECTION B [Answer ANY TWO (2) questions in this section]

Q3 a) Consider the mass-spring damper system depicted in Fig. Q3.



- (1) Derive the differential equations describing the behavior of the system.
 (8 marks)
- (2) Assuming that $x_1(0) = \dot{x_1}(0) = x_2(0) = \dot{x_2}(0) = 0$, determine the transfer function G(s) = X1(s)/F(s). (12 marks)
- b) With the aid of a graph, explain the different between underdamped and overdamped response.

 (5 marks)

Total 25 marks

Q4 a) Derive a transfer of a first order system having unit step response shown in Fig. Q4.

(8 marks)

Question 4 continued over the page Please turn the page

- b) Consider a system with transfer function $G(s) = \frac{15}{s^2 + 2s + 7}$.
 - (1) Determine stability of the system

(3 marks)

(2) Calculate peak time and peak value if a unit step input is given to the system

(10 marks)

(3) Sketch unit step response of the system.

(4 marks)

Total 25 marks

Q5 Refer to the block diagram of a feedback control system with disturbance shown in Fig. Q5.

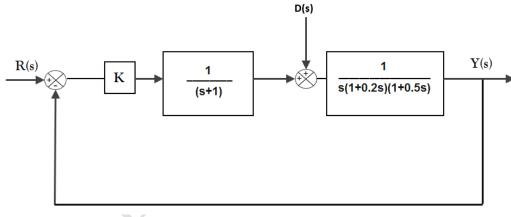


Fig. Q5

(1) Derive the whole system's output X(s) function.

(8 marks)

(2) Determine the range of K that make the system remain stable

(9 marks)

(3) Calculate steady state value of the system if R(s) is a unit step input and D(s) = 0.

(7 marks)

Total 25 marks

END OF QUESTIONS

Please turn the page

Appendix 1

Saturated water-Pressure table

		Specific volume m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg - K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, <i>u,</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_t</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.9749 8.8270 8.7227
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6691
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3545
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.0877
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9650 6.9402
450 500	147.90 151.83	0.001088 0.001093	0.41392 0.37483	622.65 639.54	1934.5 1921.2	2557.1 2560.7	623.14 640.09	2120.3 2108.0	2743.4 2748.1	1.8205 1.8604	5.0356 4.9603	6.8561 6.8207

Appendix 1 continued

Superheated water (Continued)													
T	v	и	h	s	v	и	h	s	v	и	ħ	S	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	
	P = 4.0 MPa (250.35°C)					= 4.5 MP	a (257.44	°C)	P = 5.0 MPa (263.94°C)				
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737	
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571	
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111	
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516	
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483	
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210	
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781	
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2605	
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136	
800	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7.7458	
900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8		7.9619	
1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648	
1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566	
1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388	
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124	
	P = 6.0 MPa (275.59°C)					= 7.0 MP	a (285.83	°C)	P = 8.0 MPa (295.01°C)				
Sat.	0.03245	2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450	
300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937	
350	0.04225	2790.4	3043.9	6.3357	0.035262	2770.1	3016.9	6.2305	0.029975	2748.3	2988.1	6.1321	
400	0.04742	2893.7	3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344		3139.4	6.3658	
450	0.05217	2989.9	3302.9	6.7219	0.044187	2979.0	3288.3	6.6353	0.038194	2967.8	3273.3	6.5579	
500	0.05667	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041767	3065.4	3399.5	6.7266	
550	0.06102	3175.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.045172	3160.5	3521.8	6.8800	
600	0.06527	3267.2	3658.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221	
700	0.07355	3453.0	3894.3	7.4247	0.062850	3448.3	3888.3	7.3487	0.054829	3443.6	3882.2	7.2822	
800	0.08165	3643.2	4133.1	7.6582	0.069856	3639.5	4128.5	7.5836	0.061011	3635.7	4123.8	7.5185	
900	0.08964	3838.8	4376.6	7.8751	0.076750	3835.7	4373.0	7.8014	0.067082	3832.7	4369.3	7.7372	
1000	0.09756	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419	
1100	0.10543	4247.1	4879.7	8.2709	0.090341	4245.0	4877.4	8.1982	0.079025	4242.8	4875.0	8.1350	
1200	0.11326	4459.8	5139.4	8.4534	0.097075	4457.9	5137.4	8.3810	0.084934	4456.1	5135.5	8.3181	
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925	

END OF PAPER