UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE
 BENG (HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2019/2020

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

Date: Thursday $16^{\text {th }}$ January 2020 Time: 1:00pm - 3:00pm

INSTRUCTIONS TO CANDIDATES: There are SIX questions.
Answer Two Questions from Part A and Two Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

CANDIDATES REQUIRE:

Formula Sheet (attached)

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

PART A

Q1.
a) The complex number z can be expressed as $z=-\frac{1}{2}+\frac{1}{2} j$

Evaluate $z^{1 / 2}$ and display the roots in an argand diagram.
b) Resolve into partial fractions:

$$
\frac{x^{2}+1}{x^{2}-3 x+2}
$$

c) Two alternating voltages are given by

$$
V_{1}=7 \sin \omega t \text { volts } ; \quad V_{2}=5 \sin \left(\omega t+\frac{\pi}{4}\right) \text { volts }
$$

Determine a sinusoidal expression for the resultant $\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$, using sine and cosine rule and compare your results graphically.

Q2.
a) The energy \mathbf{W} stored in a flywheel is given by: $W=k r^{5} N^{2}$, where \mathbf{k} is a constant, \mathbf{r} is the radius and \mathbf{N} the number of revolutions. Determine the approximate percentage change in the energy stored \mathbf{W} when the radius \mathbf{r} is increased by 1.3% and the number of revolution \mathbf{N} is decreased by 2%.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Q2 continued...

b) In a mass-spring-damper system, the acceleration $\ddot{\boldsymbol{X}} \frac{m}{s^{2}}$, velocity $\dot{\boldsymbol{x}} \mathrm{m} / \mathrm{s}$ and displacement \mathbf{X} m are related by the following simultaneous equations:

$$
\begin{aligned}
6.2 \ddot{x}+7.9 \dot{x}+12.6 x & =18.0 \\
7.5 \ddot{x}+4.8 \dot{x}+4.8 x & =6.39 \\
13.0 \ddot{x}+3.5 \dot{x} \pm 13.0 x & =-17.4
\end{aligned}
$$

By using Determinant method, determine the acceleration, velocity and displacement for the mass - damper system, correct to 2 decimal places.
c) The temperature $\boldsymbol{\theta}^{\circ} \mathrm{C}$ of an electrical conductor at time t seconds is given by:
$\theta=\theta_{0}\left(1-e^{-\mathrm{t} / \mathrm{T}}\right)$, where θ_{0} is the initial temperature and T seconds is a constant.
Determine:
(i) θ when $\theta_{0}=159.9^{\circ} \mathrm{C}, \mathrm{t}=30 \mathrm{~s}$ and $\mathrm{T}=80 \mathrm{~s}$,
(ii) the time t for θ to fall to half the value of θ_{0} if T remains at 80 s .

Q3.
a) In two closed loops of an electrical circuit, the currents flowing (I) in Amperes are given by the simultaneous equations:

$$
\begin{array}{r}
l_{1}+2 l_{2}+4=0 \\
5 l_{1}+3 I_{2}-1=0
\end{array}
$$

Use matrices method to solve for I_{1} and I_{2} respectively from the equations
(10 marks)

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Q3 continued...

b) A ship heads in a direction of $\mathrm{E} 20^{\circ} \mathrm{S}$ at a speed of $27 \mathrm{~km} / \mathrm{hr}$ while the current is 6 $\mathrm{km} / \mathrm{hr}$ in a direction of $\mathrm{N} 30^{\circ} \mathrm{E}$. Determine the speed and actual direction of the ship.
c) Solve the logarithmic equations:
(i) $\quad \log \left(x^{2}+8\right)-\log (2 x)=\log 3$
(ii) $\quad \ln x+\ln (x-3)=\ln 6 x-\ln (x-2)$

END OF PART A

PLEASE TURN THE PAGE FOR PART B

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

PART B

Q4.
a) A compound bar consists of a circular rod of steel of diameter 20 mm rigidly fitted into a copper tube of internal diameter 20 mm and thickness 5 mm as shown in Figure Q4. If the bar is subjected to a load of 100 kN , determine the following:
(i) Stress developed in steel rod
(ii) Stress developed in copper tube

Take modulus of elasticity, E of steel as 200GPa and E of copper as 120 GPa
(iii) Define compound bar and its rules of calculation

Figure Q4. A Compound bar
b) A bar 24 mm in diameter and 400 mm in length is acted upon by an axial load of 38 kN .the elongation of the bar and the change in diameter are measured as 0.165 mm and 0.0031 mm respectively. Determine the following:
(i) Poisson's ratio
(3 marks)
(ii) The values of modulus of elasticity, bulk modulus and rigidity modulus.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Q5.
a) A steel bar of 20 mm diameter is loaded as shown in Figure Q5a.The loads applied are axially which include axial and compressive loads. Using superposition determine the following:
(i) Stresses in each part
(6 marks)
(ii) Total elongation

Take E $=210$ GPa

Figure Q5a.
b) A Square plate with non-concurrent coplanar forces acting on a hook is shown in the free body diagram in Figure Q5b.
Determine the following forces for the static equilibrium of the square plate:
I. The force F_{D}
II. The force Fc
III. The angle $\boldsymbol{\Theta}$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Q5 continued...

Figure Q5b.Square plate with non-concurrent coplanar forces acting on a hook
Total 25 marks
Q6.
A simply supported beam carries concentrated lateral loads at C and E, and a uniformly distributed lateral load over the length DC as shown in Figure Q6.
Determine:
(i) Reaction loads at the support
(ii) Construct the shear force diagram for the beam
(iii) Construct the bending moment diagram for the beam
(iv) Find the position of maximum bending moment.

Figure Q6. Simply supported beam

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

FORMULA SHEET

Determinants
$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$
Matrices
$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$\mathrm{U}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$
Binomial
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$.
Validity $|x|<1$ Partial Fractions
$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Formula sheet Continued...

Stress

Normal $\sigma=\frac{P}{A} \mathrm{~A}=\mathrm{x}$-sectional area

Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain
Normal $\quad \varepsilon=\frac{\delta \ell}{\ell}$
Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)
Compound Bars
$P=P_{1}+P_{2}$
$P=\sigma_{1} A_{1}+\sigma_{2} A_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,

Elastic Constants

$$
E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}
$$

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E}
$$

$$
\varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E}
$$

$\varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}$
$\varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}$
$\varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)$
$\varepsilon_{v}=\frac{\delta V}{V}$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2019/20
Engineering Principles 1
Module No. AME4062

Formula sheet Continued...

Compressibility

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}$

